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Gray mold caused by Botrytis cinerea is one of the most important diseases of grape and causes
significant yield losses. Eighty-two isolates of B. cinerea causing gray mold disease in grape
berries and strawberries were collected from markets and orchards in Chiang Mai province,
northern Thailand. The carbendazim resistance of B. cinerea was evaluated according to
inhibition of mycelia growth in PDA plates amended with different concentrations of the
fungicide. All B. cinerea isolates were classified as highly resistant (HR) to carbendazim. In
further studies, analysis of the g-tubulin gene sequence revealed amino acid replacements in the
HR mutants compared to the wild-type strain. The result indicated that two benzimidazole
resistance mutations occurred at codon 198. The first one was, a glutamic acid (GAG) to
alanine (GCG) replacement, (E198A). The second mutation was, a glutamic acid (GAG) to
valine (GTG) replacement at the same amino acid position, (E198V). Both mutations resulted
in high resistance to carbendazim.

Keywords: Botrytis cinerea, carbendazim, high resistance, g-tubulin gene
Introduction

Grape is one of the most economically important fruit crops with a
cultivated area of 8 million ha around the world (Vivier and Pretorius, 2002).
Vineyards often face epidemics of disease. The most economically important
postharvest disease is gray mold caused by the fungus Botrytis cinerea Pers.
(teleomorph Botryotinia fuckeliana (deBary) Whetzel). Botrytis cinerea is a
necrotrophic pathogen attacking over 200 different plant species (Jarvis, 1980).
The pathogen can attack many plant organs including leaves, stems and fruit,
often with heavy losses after harvest. In many vineyards around the world, gray
mold disease causes significant yield losses; losses in both the quality and
quantity of grape berries for wine production due to B. cinerea have
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beenestimated at 2 billion USD per year (Elad et al., 2007), and the cost to
control B. cinerea was 780 million USD in 2002 (Genescope, 2002).

Infection of grape often occurs at bloom time, followed by a period of
latency, during which the pathogen is present (latent) inside the berry without
causing disease symptoms, generally until grape berries begin to ripen
(McClellan et al., 1973; Nair et al., 1995; Pezet et al., 1986). The most
common and destructive phase of this disease is infection of ripe berries.
Infected berries first appear soft and watery. The berries of white cultivars
become brown and shriveled, and those of purple cultivars develop a reddish
color. Under high relative humidity and moisture, infected berries usually
become covered with a gray growth of fungus mycelium. The fungus can also
cause a blossom blight that can result in significant crop loss early in the season
(Elad et al., 2007).

Effective gray mold control is usually based on fungicide application
but chemical control of the pathogen has been impaired by the development of
resistance to the intensively used site-specific, systemic benzimidazole
fungicides, such as carbendazim benomyl, and thiophanate-methyl (Beever et
al.,, 1989; Yourman et al., 1999). The evolution of fungicide resistance has
become a major problem worldwide because the fungus is known to rapidly
adapt to its environment. Fungicide resistance in the field is particularly
common, where fungicide application is frequent and indiscriminate.

The first report of benzimidazole resistance in B. cinerea was on
cyclamen in Dutch greenhouses after 2 years of use (Bollen and Scholten,
1971). A similar situation occurred in European vineyards after only three to
four seasons (Leroux and Clerjeau, 1985; Smith, 1988). Benzimidazoles are a
group of broad-spectrum systemic fungicides which interact with tubulin,
especially g-tubulin. Benzimidazoles inhibit the assembly of microtubules by
binding to g-tubulin sub-units of the fungus (Davidse and Ishii, 1995). In most
cases, mutations of amino acids at positions 198 and 200 in the S-tubulin gene
confer benzimidazole resistance in field isolates of many plant pathogens
(Altertini et al., 1999; Koenraadt et al., 1992; Ma and Michailides, 2005;
Yarden and Katan, 1993)

The current study was conducted to determine the prevalence of
carbendazim resistance in B. cinerea causing post-harvest gray mold disease of
grape and strawberry in Chiang Mai province, northern Thailand, and the
relationship between fungicide resistance and alteration of the g-tubulin gene
sequence of resistant strains of B. cinerea, It was hoped that further research on
the effective prevention and control of gray mold of grapes would be
facilitated.
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Materials and Methods
Isolation and cultivation of B. cinerea isolates

B. cinerea was isolated from infected grape berries and strawberries in
Chiang Mai province, northern Thailand. The fungus was identified under a
compound microscope and conidia were transferred by needle to potato
dextrose agar (PDA). All isolates were incubated at 25 <€. After single spore
isolation, mycelial discs of B. cinerea were maintained in mineral oil at 5 €
until use.

Evaluation of fungicide resistance of B. cinerea

Carbendazim resistance was assessed by observing the mycelial growth
of the fungus on PDA amended with carbendazim at 0, 0.01, 0.1, 1, 10, 100,
500 (manufacturer’s recommended rate) and 1000 pg/ml (adapted from Yarden
and Katan, 1993; Leroux et al., 2002). A 5-mm-diameter mycelial plug was cut
from the margin of actively growing cultures of the fungus and transferred onto
the amended and control PDA. Three replicated plates were used for each
fungicide concentration. Petri plates were incubated at 25 <€ for 10-14 d. The
diameter of each colony was measured and its growth reduction percentage was
calculated by comparison with the control. The level of resistance to
carbendazim was evaluated and grouped into four representative phenotype
resistance levels (Table 1).

Table 1 Phenotype resistance levels of Botrytis cinerea to carbendazim
fungicide
(Koenraadt et al., 1992; Peres et al., 2004)

Carbendazim concentration (pg/ml)
Resistance levels

0 001 0.1 1 10 100 500* 1000
Sensitive (S) vi v v v X7 X X X
Weakly resistant (WR) v v 4 4 4 X X X
Moderately resistant (MR) v* v 4 4 4 4 X X
Highly resistant (HR) v v 4 4 v v v v

* =The field recommendation rate
Vv’ = Percentage of growth > 10% compared with the control
/X = Percentage of growth < 10% compared with the control

171



DNA Extraction

Botrytis cinerea mycelial discs were cultured on PDA at
25 € for 2 wk. Mycelia were collected and genomic DNA was extracted using
a NucleoSpin® kit (Macherey-Nagel, Diren, Germany), according to the
manufacturer’s instructions and the CTAB method (Hortigenetics Research
(S.E. Asia) Co., Ltd. Chiang Mai, Thailand). The quantity and quality of
genomic DNA were measured using a NanoDrop Spectrophotometer (Thermo
Scientific, Inc.).

Sequence analysis of the g-tubulin gene from B. cinerea strains

The PCR primer pair Bcbh-F (5’-CACTGAGGGTGCTGAGCTTGT-3’)
and Bcb-R (5’-GAAGCGGCCATCATGTTCTTA-3’) according to Zhang et al.
(2010) was used to amplify a 525 bp g-tubulin gene fragment from B. cinerea
(GenBank accession number U27198). All PCR reactions were performed in 50
I volumes and contained 10-100 ng of DNA template, 5 i 10x PCR buffer, 5
i dNTPs, 1 | primer Bcb-F, 1 primer Bcb-R, 1 (4 DNA template, 3 i
MgCl,, 33 i distilled water, and 1 il Taqg DNA Polymerase. The PCR program
was 94 € x 5 min, (94 € x 1 min, 53 € x 1 min, 72 € x 1 min) x 35 cycles,
followed by final extension at 72 € x 10 min. PCR products were analyzed by
1% agarose gel electrophoresis and observed by UV illumination after staining
with 2.5% ethidium bromide. Sequence data were compared with the data of
the S-tubulin gene in the GenBank database and analyzed by using GENETY X
software, version 11.

Results
Isolation and cultivation of B. cinerea isolates

Isolates of B. cinerea from grape and strawberry were collected from
markets and orchards in Chiang Mai province, northern Thailand. A total of 82
isolates of B. cinerea were collected, 64 from grape and 18 from strawberry; 24
isolates were obtained from markets and supermarkets, 42 from Fang District,
11 from Mae-Rim District and five from Sa-Maung District.

The morphological characterization of all isolate was done by growing
on PDA for 14 d. The colony characteristics of all isolates were divided into
three categories: dark gray colony (20.73 %), greyish-brown colony (51.22 %)
and light gray colony (28.05 %). The initial color of colonies on PDA was
white, then became greyish-brown, dark gray or light gray. Conidia were
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usually produced over the surface of the medium. In some isolates sclerotia
were abundant. Sclerotia were superficial or deeply imbedded in the agar and
adherent to the bottom of the petri dish. The hyphae were branched, septate,
hyaline to brown. Conidiophore arising directly from the mycelium, 2 pm or
longer, apically branching and bearing numerous conidia. Conidia unicellular,
ellipsoidal or ovoid, colorless to pale brown, smooth, 6-18 x 3.5-12 pm.

Evaluation of fungicide resistance of B. cinerea

The 82 isolates of B. cinerea were tested for carbendazim resistance by
growth assays on PDA amended with carbendazim at concentrations of 0, 0.01,
0.1, 1, 10, 100, 500 and 1000 pg/ml. The isolates were classified into four
representative phenotype reactions, highly resistant (HR), moderately resistance
(MR), weakly resistance (WR), and sensitive (S). All, 82 isolates collected
were classified as highly resistant (HR) to carbendazim (Table 2 and Figure 1).

Table 2 Carbendazim-resistant isolates of Botrytis cinerea causing gray mold

disease
Origin Resistance

Isolate Host (District/location, Province) Level
Bc-MKG1 Grape Tesco Lotus Super Market, CM* HR?
Bc-MKG2 Grape Tesco Lotus Super Market, CM HR
Bc-MKG3 Grape Tesco Lotus Super Market, CM HR
Bc-MKG4 Grape Tesco Lotus Super Market, CM HR
Bc-MKG5 Grape Tesco Lotus Super Market, CM HR
Bc-MKG6 Grape Tesco Lotus Super Market, CM HR
Bc-MKG7 Grape Tesco Lotus Super Market, CM HR
Bc-MKG8 Grape Tesco Lotus Super Market, CM HR
Bc-MKG9 Grape Tesco Lotus Super Market, CM HR
Bc-MKG10 Grape Tesco Lotus Super Market, CM HR
Bc-MKG11 Grape Tesco Lotus Super Market, CM HR
Bc-MKG12 Grape Tesco Lotus Super Market, CM HR
Bc-MKG13 Grape Tesco Lotus Super Market, CM HR
Bc-MKG14 Grape Tesco Lotus Super Market, CM HR
Bc-MKG15 Grape Tesco Lotus Super Market, CM HR
Bc-MKG16 Grape Tesco Lotus Super Market, CM HR
Bc-MKG17 Grape Big C Super Market, CM" HRY
Bc-MKG18 Grape Big C Super Market, CM HR
Bc-MKG19 Grape Big C Super Market, CM HR
Bc-MKG20 Grape Big C Super Market, CM HR
Bc-MKG21 Grape Big C Super Market, CM HR

YCM =Chiang Mai Province, Thailand
ZHR = highly resistant
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Table 2 Continued

Origin Resistance

Isolate Host (District/location, Province) Level
Bc-MKG22 Grape Big C Super Market, CM HR
Bc-FG17 Grape Fang, CM HR
Bc-FG18 Grape Fang, CM HR
Bc-FG19 Grape Fang, CM HR
Bc-FG20 Grape Fang, CM HR
Bc-FG21 Grape Fang, CM HR
Bc-FG22 Grape Fang, CM HR
Bc-FG40 Grape Fang, CM HR
Bc-FG41 Grape Fang, CM HR
Bc-FG42 Grape Fang, CM HR
Bc-FG43 Grape Fang, CM HR
Bc-FG44 Grape Fang, CM HR
Bc-FG45 Grape Fang, CM HR
Bc-FG46 Grape Fang, CM HR
Bc-FG47 Grape Fang, CM HR
Bc-FG48 Grape Fang, CM HR
Bc-FG49 Grape Fang, CM HR
Bc-FG50 Grape Fang, CM HR
Bc-FG51 Grape Fang, CM HR
Bc-FG52 Grape Fang, CM HR
Bc-FG53 Grape Fang, CM HR
Bc-FG54 Grape Fang, CM HR
Bc-FG55 Grape Fang, CM HR
Bc-FG56 Grape Fang, CM HR
Bc-FG57 Grape Fang, CM HR
Bc-FG58 Grape Fang, CM HR
Bc-FG59 Grape Fang, CM HR
Bc-FG60 Grape Fang, CM HR
Bc-FG61 Grape Fang, CM HR
Bc-FG62 Grape Fang, CMY HR?
Bc-FG63 Grape Fang, CM HR
Bc-FG64 Grape Fang, CM HR
Bc-FG65 Grape Fang, CM HR
Bc-FG66 Grape Fang, CM HR
Bc-FG67 Grape Fang, CM HR
Bc-FG68 Grape Fang, CM HR
Bc-FG69 Grape Fang, CM HR
Bc-FG70 Grape Fang, CM HR
Bc-FG71 Grape Fang, CM HR
Bc-FG72 Grape Fang, CM HR
Bc-FG73 Grape Fang, CM HR
Bc-FG74 Grape Fang, CM HR
Bc-FG75 Grape Fang, CM HR

YCM =Chiang Mai Province, Thailand
ZHR =highly resistant
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Table 2 Continued

Origin Resistance
Isolate Host (District/location, Province) Level
Bc-MRS1 Strawberry Mae-Rim, CM HR
Bc-MRS2 Strawberry Mae-Rim, CM HR
Bc-MRS3 Strawberry Mae-Rim, CM HR
Bc-MRS4 Strawberry Mae-Rim, CM HR
Bc-MRS5 Strawberry Mae-Rim, CM HR
Bc-MRS6 Strawberry Mae-Rim, CM HR
Bc-MRS7 Strawberry Mae-Rim, CM HR
Bc-MRS8 Strawberry Mae-Rim, CM HR
Bc-MRS9 Strawberry Mae-Rim, CM HR
Bc-MRS11 Strawberry Mae-Rim, CM HR
Bc-MKS1 Strawberry Meung-Mai Market, CM HR
Bc-MKS2 Strawberry Meung-Mai Market, CM HR
Bc-SMS3 Strawberry Sa-Maung, CM HR
Bc-SMS4 Strawberry Sa-Maung, CM HR
Bc-SMS5 Strawberry Sa-Maung, CM HR
Bc-SMS14 Strawberry Sa-Maung, CM HR
Bc-SMS33 Strawberry Sa-Maung, CM HR

YCM =Chiang Mai Province, Thailand

ZHR = highly resistant
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Figure 1 Carbendazim-resistant isolates of Botrytis cinerea on potato dextrose agar
(PDA) amended with carbendazim at 0 (control), 0.01, 0.1, 1, 10, 100, 500,
and 1,000 pg/ml; (HR) - highly resistant phenotype
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Sequence analysis of p-tubulin gene from B. cinerea strains

Fifty isolates of B. cinerea with high resistance to carbendazim were
randomly selected for identification through molecular techniques.

The DNA of each isolate was amplified by PCR using the Bcb-F and
Bcb-R primers. The PCR product region was approximately 591 bp for all
samples (Figure 2).

The benA sequences (accession number U27198), including wild-type
sequences (accession number Z69263) and benomyl-sensitive sequences
(accession number X73133) of the B. cinerea f-tubulin gene retrieved from
GenBank were used for comparison. The nucleotide sequence of a 591 bp
segment of the p-tubulin gene of B. cinerea, was used for analysis of each
isolate.

Comparison and alignment of the p-tubulin gene sequence of each
isolate indicated that amino acid changes in the highly benzimidazole resistant
mutants occurred at position 198. Two benzimidazole resistance mutations
were found at codon 198. The first one, a glutamic acid (GAG) to alanine
(GCG) replacement and the second, a glutamic acid (GAG) to valine (GTG)
replacement occurred at the same position, both resulting in high carbendazim
resistance (Figure 3).

Bc-FG63
Bc-SMS5
Bc-MKG19
Bc-MKG7
Bc-MRS6

Bc-MKS1

[
-
()
£
-
©
=

Bc-FG17

Figure 2 PCR amplification of the g-tubulin gene from isolates of Botrytis
cinerea causing gray mold disease; PCR products were generated
using the Bcb-F and Bcb-R primers. Markers are from the 100 bp
Ladder.
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Isolate
code
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Codon 198

CATCAATTGGTTGAGAACTCTGACGAGACCTTCTGTATCGATAACGAGGCT
HQLVENSDETFCIDNEA
CATCAATTGGTTGAGAACTCTGACGAGACCTTCTGTATCGATAACGAGGCT
HQLVENSDETFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA

Figure 3 Comparison of deduced nucleotide and amino acid sequences of the
S-tubulin gene from a wild-type strain of Botrytis cinerea [(Wild-Type)
Bentino et al., 1998], a benomyl-sensitive strain [(S) Yarden and Katan,

1993],

benomyl-resistant strain [(HR) Park et al., 1996] and the

carbendazim-resistant phenotypes of B. cinerea isolates causing gray mold
disease in northern Thailand. Amino acid mutations are indicated by bold

letters.
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Isolate
code

Bc-MKG22

Bc-FG17
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Bc-FG61
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Bc-FG66
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Bc-MRS3

Figure 3 Continued
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Phenotype
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR
HR

HR

Codon 198
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT

HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA
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Isolate

code Phenotype Codon 198

Bc-MRS7 HR CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA

Bc-MRS8 HR CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA

Bc-MRS10 HR CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA

Bc-MKS1 HR CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA

Bc-MKS2 HR CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA

Bc-SMS3 HR CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA

Bc-SMS4 HR CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA

Bc-SMS5 HR CATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCGATAACGAGGCT
HQLVENSDATFCIDNEA

Bc-SMS14 HR CATCAATTGGTTGAGAACTCTGACGTGACCTTCTGTATCGATAACGAGGCT
HQLVENSDVTFCIDNEA

Bc-SMS33 HR CATCAATTGGTTGAGAACTCTGACGTGACCTTCTGTATCGATAACGAGGCT

HQLVENSDVTFCIDNEA
Figure 3 Continued

Discussions

Benzimidazole-resistant B. cinerea isolates have been found in
numerous crops throughout the world (Stehmann and de Waard 1996). In
Chiang Mai, Thailand, B. cinerea isolates collected from grape and strawberry
showed 100% high resistance to carbendazim.

Resistance to benzimidazole fungicides has been reported in many
fungal species. In most cases, resistance is associated with point mutations in
the p-tubulin gene which result in altered amino acid sequences at the
benzimidazole binding site (Davidson et al., 2006; Koenraadt et al., 1992; Ma
et al., 2003; Maymon et al., 2006). Most field-resistant isolates of plant
pathogenic fungi show codon changes that seem to be restricted to positions 50
(McKay et al., 1998), 198, 200 (Albertini et al., 1999; Koenraadt et al., 1992),
and 240 (Albertini et al., 1999).

Analysis of the sequence of the p-tubulin gene revealed amino acid
replacements in the highly benzimidazole resistant mutants compared to the
wild-type strain. Two benzimidazole resistance mutations at codon 198 were
identified in isolates with the carbendazim HR phenotype. The first one was a
glutamic acid (GAG) to alanine (GCG) replacement (E198A) in highly
carbendazim-resistant isolates. The second mutation was a glutamic acid
(GAG) to valine (GTG) replacement (E198V) at the same amino acid position.
The glutamic acid to alanine mutation at codon 198 was also found in the
resistant strain Ben-26 and two benzimidazole resistant field isolates (Ben-F1,
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Ben-F2) of B. cinerea (Ziogas et al., 2009). The role of this mutation in
benzimidazole resistance has previously been recognised in B. cinerea (Yarden
and Katan 1993; Leroux et al., 2002), Neurospora crassa (Orbach et al., 1986;
Jung et al., 1992), Penicillium expansum (Fujimura et al., 1992), Venturia.
inaequalis and V. pirina (Fujimura et al., 1992), Penicillium aurantiogriseum
(Koenraadt et al., 1992) and Monilinia fructicola (Ma et al., 2003). The GAG
to GTG point mutation at codon 198 has been reported in Penicillium spp.
(Sholberg et al.,, 2005) and V. inaequalis (Koenraadt et al., 1992), both
resulting in high resistance to benzimidazoles.

In the current research, all isolates of B. cinerea possessed a high level
of carbendazim resistance, associated with mutations at codon 198, and
attributed to S-tubulin modifications. The modification of the S-tubulin gene in
the pathogen can be passed on to progeny thus increasing the incidence of
carbendazim resistance in the field populations of B. cinerea. Moreover,
benzimidazole cross resistance has been reported (Damicone, 2009). Cross
resistance occurs when pathogens resistant to one fungicide are also resistant to
other fungicides that have the same site-specific mode of action. Therefore,
detection of resistance levels in populations of phytopathogenic fungi in a field
will help growers make proper decisions on resistance management programs
to control diseases and prevent the risk of fungicide resistance development.
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