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This paper investigates the simulation of ice formation in one and two dimensions by the cell-centred

finite volume method. The model is based on the heat conduction equation with the fixed grid, latent heat

source approach. The piecewise-linear profile of variables in space is employed. For the temporal discretisa-

tion, three time-stepping schemes are compared: the explicit, Crank-Nicolson, and the fully implicit schemes.

Also examined are different approximations of conductivity at interfaces between adjacent ice and water

control volumes, i.e. the 2 well established arithmetic and harmonic means of ice and water conductivities;

while the use of ice conductivity is introduced. It is found that numerical results of all temporal schemes show

excellent agreements with analytical solutions and exhibit similar accuracies once grid and time interval

independencies are achieved. The explicit scheme, however, has superior CPU-time efficiency. For the invest-

igation on the interface conductivity, the conductivity approximation as that of ice yields the most accurate

computed temperature field.
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Ice  manufacturers  for  food  industries  in
Thailand have consumed huge amount of electric-
ity in the manufacturing process. Thus, the purpose
of this work is to obtain suitable mathematical
models and numerical schemes for the develop-
ment of a simulation program for ice formation,
leading to further studies on energy-saving and
quality improvements.

Unique features of solidification problems
are the continuously moving liquid-solid front and
the latent heat that is released on this interface.
In  addition,  the  ice  formation  is  an  isothermal
phase change problem which involves abrupt dis-
continuity of properties at the constant freezing tem-
perature.

Over the years, a number of related compu-
tational works have employed various techniques
in the analysis of phase change problems. Table 1
shows the schemes used in selected papers. Pre-
vious studies use combinations of two approaches,
the  grid  consideration  and  the  latent  heat  re-
presentation methods.

The grid consideration approach may be fur-
ther divided into front tracking and fixed grid meth-
ods. In the front tracking scheme, favoured
by  Rubinsky  and  Cravahlo  (1981),  Voller  and
Cross (1981), Voller and Cross (1983), Weaver and
Viskanta (1986) and Askar (1987), the position of
moving  liquid-solid  interface  is  determined  in
every time step, frequently with immobilised freez-
ing front in transformed coordinates (Kim and
Kaviany,  1990).  Hence,  this  method  does  not
require the discontinuity approximation for iso-ther-
mal problems. The main drawback, however, is the
extremely complicated calculation of inter-face
movements in multi-dimensional modelling.

Thus, many researchers, such as Comini et
al. (1974), Morgan et al. (1978), Roose and Storrer
(1984), Dalhuijsen and Segal (1986), Pham (1986),
Dhatt et al. (1989), Comini et al. (1990) and Voller
et al. (1990), recommend the fixed grid method,
which implicitly contains the moving interface
condition within the mathematical model. This
method is more flexible than the front tracking
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and is suitable for multi-dimensional problems.
It is noted that in some works, for instance,

Weaver and Viskanta (1986), the grid is fixed in
most of the domain apart from the moving freez-
ing front in order to eliminate the problematical
approximation at the interface. Hence, the compu-
tation grid on both sides of the interface changes
sizes  and  careful  consideration  of  temperature
gradient is required.

For the second type of approaches, the la-
tent heat is accounted for by either the tempera-
ture-based or the enthalpy-based method. The tem-
perature-based approach insists on retaining the
temperature as the only state variable. In order to
avoid the discontinuity in isothermal problems, an
approximate numerical smoothing must be used
and a special integration is needed to compute the

latent heat (Murray and Landis, 1959; Crivelli and
Idelsohn, 1986; Celentano et al., 1994).

On  the  other  hand,  the  enthalpy-based
method is further divided into basic enthalpy, ap-
parent heat capacity and latent heat source sub-cat-
egories. In the basic enthalpy scheme, enthalpy is
used as the primary variable and the temperature is
calculated from a previously defined enthalpy-tem-
perature relation. This method gives reason-
ably accurate results for metallic solidifying over
mushy ranges (Thomas et al., 1987), but it is com-
plex and computationally expensive. More impor-
tantly,  it  performs  poorly  for  isothermal prob-
lems.

In the apparent heat capacity method, the
latent heat is calculated from the integration of
heat capacity with respect to temperature (Comini

Table 1. Comparisons of numerical schemes in selected isothermal phase change papers.

  Grid      Primary variable     Time-stepping

Murray & Landis (1959) FD � � �

Morgan et al. (1978) FE � � �

Lemmon (1979) FD � � �

Rubisky & Cravahlo (1981) FE � � �

Voller & Cross (1981) FD � � �

Rolph & Bathe (1982) FE � � �

Voller & Cross (1983) FD � � � �

Roose & Storrer (1984) FE � �

Pham (1986) FE � � � �

Crivelli & Idelsohn (1986) FE � � �

Dalhuijsen & Segal (1986) FE � � � �

Weaver & Viskanta (1986) FD � � �

Askar (1987) FE � � �

Dhatt et al. (1989) FE � � �

Comini et al. (1990) FE � � �

Kim & Kaviany (1990) FD � � �

Voller et al. (1990) FE, FV � � � � � �

Tamma & Namburu (1990) FE � � � �

Celentano et al. (1994) FE � � �
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et al., 1974; Morgan et al., 1978; Guidice et al.,
1978; Lemmon, 1979; Tamma and Namburu,
1990). As the relationship between heat capacity
and temperature  in  isothermal  problems  involves
sudden changes, the zero-width phase change in-
terval must be approximated by a narrow range of
phase change temperatures. Thus, the size of
time steps must be small enough that this temper-
ature range is not overlooked in the calculation.

The  drawbacks  of  previously  described
enthalpy-based methods are not observed in the
latent heat source or fictitious heat flow method.
In this approach, the latent heat is included in the
source term, which is obtained from a prescribed
relationship between latent enthalpy and temper-
ature. If the fully implicit time-stepping scheme is
used, e.g. Rolph and Bathe (1982) and Dalhuijsen
and Segal (1986), an iterative scheme is used for
calculating the latent heat increment.

Comparing the advantages and disadvan-
tages of these approaches for the finite volume
simulation, this work chooses the combination of
fixed grid and the latent heat source schemes. The
proposed latent heat source method is similar to
the previously described one, but the latent heat
increment is calculated after the computation of fic-
titious temperature in the freezing region and
then the temperature fields are adjusted.

The  main  objective  of  this  study  is  the
detailed investigations of the effects of different
types of interface conductivity approximation and
the time-stepping schemes on the accuracy and ef-
ficiency of finite volume modelling which were not
formally compared in previous works (Table 1). In
all, two established interface conductivity approxi-
mations are considered, the arithmetic and the har-
monic means while the use of solid con-ductivity
is  proposed.  The  three  time-stepping schemes
are explicit, Crank-Nicolson and fully implicit.
Then the suitable combination of con-ductivity
approximation and time-stepping schemes are cho-
sen for future development.

Mathematical Model

The law of conservation of energy and the

Fourier’s law of heat conduction are employed.
The combined equations can be written in the local
form as:

       
∂H
∂t

== ∂
∂x

(k
∂T
∂x

) ++ ∂
∂y

(k
∂T
∂y

),          (1)

where H, T and k are the enthalpy, temperature
and thermal conductivity, respectively, and:

H = ρc
S

Tref

T

∫ dT        when T<T
F
,

H = ρc
S

Tref

TF

∫ dT + ρL + ρc
L

TF

T

∫ dT    when T>T
F
,

         (2)

where ρ is mass density, c is the specific heat, L is
the latent heat per unit mass, T

ref
 is the reference

temperature and T
F
 is the freezing temperature.

The subscripts S and L indicate the solid and liquid
properties, respectively.

Hence, the total latent heat of phase change
Q

P

tot of each control volume is

Q
P

tot = ρLdv
v
∫ .          (3)

It is noted that this work neglects effects of
the radiation as well as all modes of convection,
e.g. thermal, solidification expansion and bulk con-
vection, as described by Prapainop (2002). Thus,
the density of the ice is approximated to that of the
water to ensure the conservation of mass
due to the lack of mass convection across cell faces.

Finite Volume Formulation

The cell-centered finite volume procedure
follows the work by Patankar (1980). The dis-
cretisation and distribution of variables are ex-
plained. Different approximated models of material
properties  at  the  liquid-solid  interface  are  also
described. Then, mathematical equations for all
control volumes are approximately integrated over
time intervals to obtain the numerical solutions.
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1. Discretisation of Space and Time

The computational space is divided into
a  number  of  non-overlapping  control  volumes
(Figure 1). A typical control volume or cell P is
represented by the node P at the centre. The cell P
has 4 adjacent neighbours - E, W, N and S with con-
necting cell faces e, w, n and s. For 2D problems,
unit thickness in the z direction is assumed while
the 1D problems specify unit width with insulated
boundary conditions in the y direction. The loca-
tion of any variables is indicated by the subscripted
position.

The  time  domain  is  divided  into  an
arbitrary number of time steps of size t. Variables
at time t are indicated by the superscript 0. In con-
trast, the variables at time level t+ t are not
superscripted.

2. Approximations  of  Distributions  in

Space

The second-order accurate piecewise-lin-
ear temperature profile is assumed for tem-perature.
For instance, the temperature at face e
is T

e
 = T

P  
f

e
 + T

E
(1−f

e
) where f

e
 = (2δx

e
− x)/2δx

e
.

The other variable that has to be approxi-
mated at cell faces is the interface conductivity
k

INT
. This work investigates three types of approxi-

mations at a cell face shared by control volumes
with different conductivities, k

S
 for solid and k

L
 for

liquid.

The arithmetic mean is the most straight-
forward average procedure which assumes a linear
variation between two adjacent nodes k

INT
 = k

ARITH

= k
P 

 f
e
 + k

E
(1−f

e
).

The harmonic mean is used for compo-
site materials for its superior handling of abrupt
property changes by recognizing that the primary
interest is to obtain a good representation of heat
flux across interfaces rather than that of the the
conductivity (Patankar, 1980):

1
kINT

== 1
kHAR

== 1−− f e

kP

++ f e

kE

.          (4)

As solidification progresses through the
saturated control volume, the interfaces between
the fully frozen and saturated control volumes are
fully frozen most of the time. Hence, the use of
solid conductivity at the interface is also proposed
such that k

INT
 = k

S
. In certain sense, the method is

analogous to the upwind scheme, in which the up-
wind property dominates the downwind values.

3. Time-Stepping Schemes

In this study, the temporal distributions
of temperature is approximated by two-time level
schemes (Versteeg and Malalasekera, 1995) such
that:

Figure 1.  A typical 2D control volume (shaded area).
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Tdt
t

t+∆t

∫ = [ fT − (1− f )T 0 ]∆t,          (5)

where  f  is  a  weighting  factor  with  the  value
between 0 and 1.

Three main schemes are considered: ex-
plicit, Crank-Nicolson and fully implicit. The first-
order accurate explicit method uses temperature
gradients of the previous time step t to calculate
the unknown T at t+ t such that f = 0. Hence, the
time step size t is limited to t < ρc( x )

2
/2k

for 1D and t < ρc( x
2

y
2
)/2k( x

2
+ y

2
) for 2D

problems.  The  second-order  accurate  Crank-
Nicolson scheme uses the average of previous and
present  temperature  gradients  to  compute  the
present temperature, or f = 0.5, and, hence, has
less severe step size limitation than the explicit
scheme. Meanwhile, The fully implicit scheme is
unconditional stable with first-order accuracy as
f = 1.

4. Approximation of the Mathematical

Model

In the calculation, the governing equa-
tion is the heat conduction equation (1) without the
latent heat term. Whenever a control volume has
reached the freezing temperature, sensible heat that
are removed from the cells are instead converted
to latent heat and the temperature of the control
volume is held constant at freezing temperature.
This accumulated latent heat is used to indicate the
phase status of the control volume. The position of
freezing front in the cell is not explicitly calculated
in the fixed grid technique. Instead, the saturated
control volumes compose of mushy mix of ice and
liquid  water,  whose  percentage  mass  may  be
calculated from the ratio of accumulated latent
heat to total latent heat.

In each time step, governing equation is
numerically integrated over the control volume
and time as:

ρc
w

e

∫
s

n

∫
t

t+∆t

∫
∂T

∂t
dxdydt =

∂
∂xw

e

∫
s

n

∫
t

t+∆t

∫ (k
∂T

∂x
)dxdydt

+
∂
∂yw

e

∫
s

n

∫
t

t+∆t

∫ (k
∂T

∂y
)dxdydt.

         (6)

For the transient term, it is assumed that
the temperature of the control volume is represented
by that of the node:

ρc
w

e

∫
s

n

∫
t

t+∆t

∫
∂T

∂t
dxdydt ≈ ρc(T

P
− T

P

0 )∆x∆y.          (7)

The diffusion terms are approximated
using the piecewise-linear temperature profile. For
instance:

∂
∂x

(k
∂T
∂x

)dxdydt ≈≈ [
ke (TE −− TP )

δxew

e

∫∫
s

n

∫∫
t

t++∆t

∫∫

           −− kw (TP −− TW )
δxw

]∆y∆t.      (8)

By substituting the approximated terms
in (7) and (8) as well as a time-stepping scheme
in section 3.3 into (6), the discretised equation for
a control volume P is obtained as:

a
Q

f +
ρc∆V

∆tQ
∑







T
P
= a

Q
[ fT

Q
+ (1− f )T

Q

0 ]
Q
∑

+ [
ρc∆V

∆t
− (1− f )a

Q
Q
∑ ]T

P

0 ,

         (9)

where a is the coefficients of the neighbouring
nodes and the summation is performed over all
neighbouring nodes Q.

5. Solution Algorithm

The overview of the solution algorithm
is shown in Figure 2. Prior to the first time interval,
the accumulated latent heat of a control volume P,
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Q
P

lat , is initialised as zero. At the beginning of each
time step, the phase status of each control volume
is checked. If the nodal phase is liquid and the
previous nodal temperature T

P

0  drops lower than
the freezing temperature T

F
, the control volume

becomes saturated and its node is tagged. Special
attentions are due to the cell face conductivity,
which depends on the status of the nodal phase.

The nodal temperature is then reassigned
to the freezing temperature and the latent heat in-
crement, the energy used for phase change in the
current time step, is calculated from the fictitious
sensible heat such that ∆Q

P

lat = ρc(T
F
− T

P
)dV.

The ∆Q
P

lat  is added to the accumulated
Q

P

lat  for subsequent time steps until the accumulated
latent heat equals the total latent heat available at
the node. At this stage, the control volume becomes
solid, the tag on the cell is removed and the latent
heat increment is no longer calculated.

The resulting system of simultaneous
equations is assembled and solved with the tri-
diagonal matrix algorithm (TDMA) on a personal

computer with 733 MHz, Pentium III CPU. The
solution of the model with the explicit time-step-
ping scheme is directly computed from the known
nodal temperatures of the previous time interval.
For  other  schemes with  f  0,    the resulting sys-
tem of simultaneous equations has to be re-formed
and solved until convergence is achieved.

Results and Discussions

After  the  program  is  tested  for  simple
transient heat conduction problems, 1D and 2D
phase change test cases with analytical solutions
are simulated. Then, a real problem is used as the
case study

1. One-Dimensional Phase Change

Carslaw and Jaeger (1959) and Ku and Chan
(1990) analysed and obtained exact solutions of
1D phase change of a semi-infinite slab as shown
in Appendix A. Hence, the 1D validation test case
involves a long slab that with no heat transfer at
the far end during the considered time domain. The
descriptions of the problem are as follows. A 4-m
slab has initial temperature T

i
 = 10ºC. The boun-

dary condition at one end is constant temperature
T

C
 = −20ºC while there is no heat flux at the other

end  as  illustrated  in  Figure  3.  Uniform  control
volumes with size x are used.

Specified material properties in solid and
liquid phases are shown in Table 2. Others are
freezing temperature T

F
 = 0ºC and latent heat for

solidification L = 338 kJ/kg. As the convection of
the water across cell faces and the induced stress
due to the expansion of the ice are not included in
this study, the density of the ice is approximated to
that of the water to ensure the conservation of mass

Figure 2.  Solution algorithm

Input data
↓

Data initialisation
↓

Start time increment loop
↓

Start solution loop
↓

Check phase status of each node
and specify appropriate properties

↓
Formulate & solve the energy equation

↓
For saturated nodes, calculate latent heat

from fictitious sensible heat
↓

Converged step solutions
↓

Prescribed number of time step is reached
↓

stop

NO

NO

YES

YES

Figure 3.  1D problem descriptions at t = 0 s.
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ing in less heat flux leaving the saturated control
volume across the cell face. Simulations, hence-
forth, show lower frozen rates accordingly. The
k

HAR
, which is recommended for interfaces of two

different materials, performs especially badly as
the freezing front, whose movement continuously
increases the conductivity in saturated cells.

When the grid and time step dependencies
are considered, it is found that the grid dependency
can be obtained with the use of x = 0.01 m,
equivalent to the total of 400 cells. More interest-

Table 2. 1D case: specified material properties.

Properties Liquid Solid

k (W/m·K) 0.556 2.220
c (kJ/kg·K) 4.226 1.762
ρ (kg/m3) 1000 1000

Figure 4. 1D  case:  temperature  from  different

k
INT

 at t = 5, 20, 40 and 80 h.

of each control volumes. When the approximations
of k

INT
 are considered, values of different k

INT
 are

k
S
 = 2.220 W/m·K, arithmetic mean k

ARITH
 = 1.388

W/m·K and harmonic mean k
HAR

 = 0.889 W/m·K.
A grid and time step independent model,

consisting of 400 cells ( x = 0.01 m) and t = 10 s,
is  employed.  Figure  4  shows  the  comparisons
between the analytical temperature and numerical
results of simulations with explicit scheme and
various k

INT
 at time instant t = 5, 20, 40, and 80 h.

The  temperature  distributions  show  that  liquid
cells cool down slowly due to low diffusivity α =
k/ρc and low temperature gradient. Once a control
volume is frozen, its temperature drops rapidly such
that the temperature gradient in the ice is almost
linear. This clearly illustrates that the rate of heat
transfer is predominantly controlled by the posi-
tion of the freezing front. As ice is a good insulator,
the freezing front advances at ever slowing rate.

It is found that under the same interface
approximation, the resulting temperature from the
explicit, Crank-Nicolson and fully implicit time-
stepping schemes have similar values once cell size
and  time  step  independencies  are  obtained  as
examplified by the maximum errors of tempera-
ture at time t = 20 h in Figure 5.

On the other hand, the interface conductiv-
ity k

INT
 significantly influences the numerical results.

The maximum temperature errors from explicit
calculations at different time instants are shown
in Figure 6. For all interface approximations, the
maximum errors occur near the edge of the slab in
early time steps due to high temperature gradients
in this region at that time. The k

S
 approximation

yields  best  numerical  results  with  slight  over-
estimation, which corresponds with the physical
meanings described previously. Meanwhile, values
of the k

ARITH
 and k

HAR
 are much lower than k

S
, result-
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ing is the additional restriction of time step sizes
t. The maximum errors the required CPU times

from simulations with various t at t = 5 h are
summarised in Table 3. As previously described,
explicit scheme has a restriction on time step size,
and  large  time  intervals  cause  the  solutions  to
diverge. Crank-Nicolson and fully implicit schemes
may employ somewhat larger time steps but the
accuracy  still  depends  on  time  step  sizes.  In
addition, implicit schemes require more CPU time
than the explicit scheme due to the iterative pro-
cedures of the solver.

Moreover, the number of saturated cells on
the freezing front at a given instant varies accord-
ing to the size of time step. Figure 7 compares fully
implicit results from a model consisting of 400

Figure 5. 1D case: maximum errors of temper-

ature from different k
INT

 at t = 20 h.

Figure 6. 1D case: maximum errors of temper-

ature from explicit models with diffe-

rent k
INT

.

Table 3. 1D case: maximum errors of temperature and CPU time at t = 5 h.

    Maximum Error (ºC)           CPU time (s)

t = 1000 s t = 100 s t = 10 s t = 1 s t = 1000 s t = 100 s t = 10 s t = 1 s

Explicit diverge diverge 2.170 2.170 diverge diverge 3.13 5.77
kS Crank-Nicolson    8.579 2.170 2.170 2.170 2.96 3.29 3.41 7.63

Fully Implicit 11.82 2.170 2.170 2.170 2.97 2.91 3.35 6.97

Explicit diverge diverge 2.170 2.170 diverge diverge 3.84 5.72
kARITH Crank-Nicolson     8.579 2.170 2.170 2.170 2.91 3.13 3.46 7.31

Fully Implicit 11.82 2.170 2.170 2.170 2.86 2.91 3.24 8.62

Explicit diverge diverge 5.358 5.358 diverge diverge 3.24 5.49
kHAR Crank-Nicolson     8.579 5.358 5.358 5.358 2.86 2.85 3.52 7.30

Fully Implicit 11.82 5.358 5.358 5.358 2.75 3.08 3.35 6.71

k
INT

      Scheme

Figure 7. 1D case: comparison of temperature with

different t.

cells with k
INT

 = k
INT

 with different t. When the
large time step size is used, several nodes undergo
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the phase change process at a given instant. As the
rate of heat transfer is mostly controlled by the
freezing front position, the wider the band of satu-
rated control volumes, the lower the heat transfer
rate. Thus, there is an additional, but dominating,
restriction  on  step  sizes  in  all  time-stepping
schemes so that the freezing front is one cell deep.

2. Two-Dimensional Phase Change

The semi-analytical solution of phase change
in a semi-infinite region, described in Appendix A,
was obtained by Rathjen and Jiji (1971). A region
with 8 m × 8 m area is considered. At the initial
time t

0
, all initial temperatures are T

i
 = 10ºC. The

boundary conditions at edges are T
C
 = −20ºC. Due

to symmetry, only one-fourth of the total area is

modelled as shown in Figure 8 with no heat flux
across the surfaces BC and CD.

Specified material properties are freezing
temperature T

F
 = 0ºC and latent heat for solidifi-

cation = 338 kJ/kg. Since the existing solution
specifies the same thermal diffusivity α for both
liquid and solid phases, the properties for both
phases are given as conductivity k = 2.220 W/m·K,
specific heat c = 1.762 kJ/kg·K and density ρ =
1000 kg/m

3
. Hence, the approximation of interface

conductivity is not considered in this case. The
analytical  temperature  contour  at  t  =  20  h  are
shown in Figure 9.

The uniform 400×400 control volumes ( x
= y = 0.01 m) are used to model the domain while
time step t = 10 s. Numerical results from all three
time-stepping schemes are found to be similar and
agree well with the analytical solution. Thus, only
explicit results along the line x = y at time instants
t = 5, 20, 40 and 80 h, shown in Figure 10, are used
as the representative in the comparison with the
analytical solutions.

The temperature distributions clearly show
heat transfer through both exposed edges, causing
a parabolic temperature profile instead of a linear
one as in 1D case. As diffusivity in both phases is
equal for this problem, the rate of heat transfer
depends solely on the temperature gradient, which
is dominated by the freezing front position.

The maximum errors of temperature and
required CPU times at t = 5 h are summarised in
Table 4. Even more apparent than in 1D, implicit
schemes require more computational time due to
the iterative procedures of the solver. Hence, the
CPU time superiority of the explicit scheme for
this phase change problem is apparent.

Three grids are employed in the consider-
ation of grid dependency. The coarse mesh contains
100×100 cells ( x = y = 0.04 m) and is success-
ively refined to grids of 200×200 and 400×400
cells. The explicit results of these grids with t =
10 s at t = 5 h are shown in Figure 11. As expected,
finer grids yield more accurate solutions. None-
theless, the results from coarsest grid do follow the
analytical trend quite well.

Figure 12 compares fully implicit results

Figure 8.  2D case: problem descriptions.

Figure 9. 2D  case:  analytical  temperature  con-

tours (ºC) at t = 20 h.
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between  t  =  1000  s  and  100  s  in  the  study  of
time interval sizes for the grid with 400×400 cells.
The observations regarding the number of nodes
undergoing phase change at the same time in the
1D case is also applicable and even more signifi-
cant in the 2D cases.

3. Case Study

The  developed  program  is  employed  to
study the freezing process in industrial ice block
manufacturing with conditions taken from a manu-
facturer in Pattani (Prapainop, 2002). The cross-
sectional area of ice block is 0.52 m × 0.13 m.
Initially, temperature of water is T

i
 = 30ºC through-

out. The boundary conditions along the edges are
T

C
 = −10ºC. Due to symmetry, only one-fourth of

the total area is modelled as shown in Figure 13.
The grid consists of 26×13 cells while t = 10 s.
From the results in the previous section, the ex-
plicit scheme with k

INT
 = k

S
 is employed. The real

properties of ice and water, as in the 1D validation,
are used.

The predicted temperature contours at time
t = 5 h are shown in Figure 14 while Figure 15
shows the temperature along the line x = y at t = 1,
2, 3, 4 and 5 h. The history of temperature at the
innermost control volume, which freezes last, as
well as the position of freezing front along the line
x = y, is illustrated in Figure 16. It takes around 42

Figure 10. 2D case: temperature profile from ex-

plicit scheme at t = 5, 20, 40 and 80 h.

Table 4. 2D case: maximum error of temperature and CPU time at t = 5 h when k
INT

 = k
S
.

         Maximum Error (ºC)        CPU time (s)

t = 1000 s t = 100 s t = 10 s t = 1 s t = 1000 s t = 100 s t = 10 s t = 1 s

Explicit diverge diverge 0.931 0.931 diverge diverge 528 5204
Crank-Nicolson 14.16 3.313 1.767 0.931 430 791 3536 22435
Fully Implicit 16.56 4.964 1.767 1.624 541 922 3091 21561

      Scheme

Figure 11. 2D case: temperature comparisons for

the evaluation of grid dependency.

Figure 12. 2D case: comparison of temperature

with different t.
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hours for the water to fully freeze, compared to
the real manufacturing cycle of 48 hours. In 3D
analysis, water is expected to freeze even faster.
This tentatively indicates that the manufacturing
cycle may be shortened if the boundary tempera-
ture can be maintained.

Conclusions

The ice formation modelling by the finite
volume method with the fixed grid and the latent
heat by fictitious sensible heat schemes is success-
fully performed. As the freezing front should be
one cell deep, this dominating restriction controls
both the time interval and grid sizes in all time-
stepping schemes. It is shown that all temporal
schemes yield similar results once the grid and time
interval independencies are achieved. Hence, it is
recommended that the explicit scheme is used as
it requires less computational effort. On the other
hand, the approximation of interface conductivity
strongly influences numerical results. It is found
that the use of harmonic mean, recommended for
composite materials, yield unsatisfactory results
as the freezing front advances through the control
volume and the discontinuity does not remain at
the cell faces as in composite interfaces. The best
numerical solutions are obtained with the approxi-
mation of the interface conductivity by the solid
conductivity, which slightly overestimates the con-
ductivities as the freezing front progresses across
the saturated control volume. Future developments
include the modelling of ice expansion, residual
stress, varying properties and adaptive grids for
moving front, comparisons with measured results
as well as industrial applications.

Figure 13.  Problem descriptions of the test case.

Figure 14. Test case: temperature contours (ºC)

at t = 5 h.

Figure 15. Test case: temperature at t = 1 to 5 h

with 1 h increment.

Figure 16. Test case: temperature history of the

innermost cell and location of satu-

rated cells.
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Appendix A: Analytical Solutions

The exact solutions for the 1D and 2D phase change validation in section 4 are roughly
described in this appendix. It is recommended that the original articles are consulted for full
descriptions.

1. One-Dimensional Phase Change

Exact solutions of 1D phase change of a semi-infinite slab were analysed by Carslaw
and Jaeger (1959) and Ku and Chan (1990) with the moving front approach. The exact tem-
perature distributions in solid, T

S 
, and liquid, T

L
, respectively are:

TS == TC ++ (TF −− TC )
erf(x* )
erf(xSL

* ) when  0 << x* << xSL
* ,

TL == Ti ++ (TF −− Ti )
erfc( α S / α L x* )

erfc( α S / α L xSL
* ) when xSL

* << x* << ∞∞,           (10)

where x* == x / 2 α St  is the dimensionless position and α = k/ρc is the thermal diffusivity which
are calculated from corresponding mechanical properties for both solid α

S
 and liquid

α
L 
 values. The values of dimensionless position of solid-liquid interface x

SL

*  are obtained via
the nonlinear algebraic equation:

T
F
− T

i

T
F
− T

C

k
L

k
S

α
S

α
L

exp(−(α
S

/ α
L
)(x

SL

* )2 )

erfc( α
s

/ α
L
x

SL

* )
+

exp(−(x
SL

* )2 )

erf(x
SL

* )
−

π x
SL

* L

c
S
(T

F
− T

C
)
= 0.            (11)

2. Two-Dimensional Phase Change

Rathjen  and  Jiji  (1971)  present  an  analytical  solution  to  the  two-dimensional  free
boundary problem of solidification in a semi-infinite region subjected to a constant wall tem-
perature. The exact solution takes the form of dimensionless temperature field T* = T

S

* =
( T

S
− T

F
/ T

F
− T

C  in the solid domain and T* = T
L

* = k
L
(T

L
− T

F
) / k

S
(T

F
− T

C
) in the fluid do-

main as T
*
 = U + V. The solution to the heat conduction U is a function of dimensionless

position x* = x / 2 αt  and y* = y / 2 αt  as:

U = −1+ (1+ T
i

* )erf(x* )erf(y* ),            (12)

where dimensionless initial temperature T
i

* = (T
i
− T

F
) / (T

F
− T

C
),  The function V involves

the phase change and is obtained by Gaussian integration of function:
.

s

(           ))
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V =
β

2π
f (η) − η

df (η)

dη








x0
*

Λ

∫
0

1

∫ ×

K(η,τ;x* )K( f (η),τ;y* ) + K( f (η),τ;x* )K(η,τ;y* )[ ]dη dτ
1− τ

+

βλ
4π1/2 K(λ ,τ;y* )E(τ;Λ;x* ) + K(λ ,τ;x* )E(τ;Λ;y* )[ ]

0

1

∫
dτ

τ1/2 (1− τ )1/2 ,            (13)

where β = L/c
S
(T

F
 - T

C
) is the latent to sensible heat ratio, x

0

*  is the intersection of solidification
front f and x* = y* and Λ and λ are related positions in the dimensionless domain as shown in
Figure 17. The dimensionless integration variables η is for x* and τ for time while functions
are:

K(η,τ;x* ) = exp
−(x* − τ1/2η)2

1− τ











− exp

−(x* + τ1/2η)2

1− τ











,            (14)

E(τ;Λ;x* ) = erf
x* - Λτ1/2

(1− τ )1/2












− erf

x* + Λτ1/2

(1− τ )1/2












,            (15)

f (x* ) = λm +
C

(x* )m − λm






,            (16)

where m and C are numerically determined constants.

Figure 17.  Diagram of dimensionless variables for the exact solution of 2D phase change

−−


