

Songklanakarin J. Sci. Technol. 36 (4), 419-423, Jul. - Aug. 2014

Original Article

Growth rate and calcium carbonate accumulation of *Halimeda macroloba*Decaisne (Chlorophyta: Halimedaceae) in Thai waters

Jaruwan Mayakun*, Patama Bunruk, and Rochanakorn Kongsaeng

Seaweed and Seagrass Research Unit, Excellence Center for Biodiversity of Peninsular Thailand,
Department of Biology, Faculty of Science,
Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.

Received 5 May 2013; Accepted 28 April 2014

Abstract

Halimeda macroloba Decaisne can utilize the CO₂ used for carbon fixation in photosynthesis and use bicarbonate as the main carbon source for calcification. Although Halimeda has been recognized as a carbon sink species, the calcium accumulation of Halimeda species in Thai waters remain poorly understood. In this study, the highest density of H. macroloba was 26 thalli/m² and Halimeda quickly produced 1-2 new segments/thallus/day or 20.1 mg dry weight/thallus/day. Its calcium carbonate accumulation rate was 16.6 mg CaCO₃/thallus/day, or 82.46 % per thallus. In Thailand, however, only three scientific papers of growth rate and CaCO₃ accumulation rate of H. macroloba have been found and collected. Of these records, the mean density was 26-104 thalli/m². The growth rate of H. macroloba was around 1-2 mg dry weight/day and the CaCO₃ accumulation rate varied around 41-91%. Thus, Halimeda has a great potential to decrease the carbon dioxide concentration in the ocean.

Keywords: calcification, CO₂, carbon sink, growth rate, Halimeda macroloba

1. Introduction

Over the past decade, atmospheric CO₂ concentrations have been rising by anthropogenic activities such as industrialization and burning of fossil fuels. Around 30% of anthropogenic CO₂ emissions were removed by oceanic calcification and photosynthesis. Seaweed can utilize the CO₂ used for carbon fixation in photosynthesis and also can use dissolved inorganic carbon; bicarbonate as the main carbon source for calcification. Calcifying green alga, *Halimeda*, is the major producers of calcium carbonate by precipitation from Ca²⁺ and HCO₃ ions in solution and can deposit calcium carbonate in the form of aragonite in the intercellular spaces (Borowitzka and Larkum, 1976; Brownlee and Taylor, 2002; Robbins *et al.*, 2009). *Halimeda* contributes to mass of

carbonate sediment in many reefs (Hillis-Colinvaux, 1980; Drew and Abel, 1988; Beach et al., 2003; Vroom and Smith, 2003; van Tussenbroek and van Dijk, 2007). Around 8% of the total world carbonate production has been contributed by Halimeda species varying among species, 50-2,323 g CaCO₃ m⁻² y⁻¹ for the psammophytic or sand-dwelling species and 28-2,234 g CaCO, m⁻² y⁻¹ for lithophytic species (van Tussenbroek and van Dijk, 2007). In a Caribbean reef lagoon, Halimeda incrassata produced carbonate around 815 g CaCO₃ m⁻² y⁻¹ and had a turnover of 30 days (van Tussenbroek and van Dijk, 2007). Drew (1983) showed that Halimeda opuntia produced new segments every six days and Halimeda copiosa and H. opuntia produced around 2,234 g CaCO₃ m⁻² y⁻¹. In addition, Payri (1988) measured a production by H. opuntia in Tahiti that was about 2,300 g CaCO₃ m⁻² y⁻¹. Halimeda has been recognized as a carbon sink species that can help decrease CO₂. However, the estimates of the CaCO, production rates vary depending upon the spatial and temporal variability (van Tussenbroek and van Dijk,

Email address: jaruwan.may@psu.ac.th

2007), plant age, photosynthesis, respiration, pH, two orders of magnitude, herbivory, and growth rate (Paul and Van Alstyne, 1988, 1992; Lobban and Harrison, 1994; De Beer and Larkum, 2001).

In recent years, Halimeda has become a dominant component of many reefs in the tropical regions of the Pacific, Atlantic, and Indian Ocean and especially in Thai waters (Lapointe and Thacker, 2002; Beach et al., 2003; Vroom et al., 2003; Mayakun et al., 2012a,b). Although Halimeda has been recognized as a carbon sink species, the biological and ecological parameters of Halimeda species in Thailand remain poorly understood. Few studies have examined the growth rate, reproduction, and responses of Halimeda in Thai waters (Mayakun, 2010; Mayakun et al., 2012a,b). For the CaCO₃ accumulation of Halimeda, it was first determined in 2008 at Phuket, Andaman Sea (Sinutok et al., 2008), but no other studies have been reported. Thus, the CaCO3 accumulation rates are still needed to confirm the potential of Halimeda as a carbon sink species. The objectives of the present study were 1) to determine the growth rate and calcium carbonate accumulation of H. macroloba at Koh Mut Sum, Mu Ko Thale Tai National Park, Gulf of Thailand, and 2) to assemble the data of growth rate and calcium carbonate accumulation of *H. macroloba* in Thai waters from the literature.

2. Materials and Methods

2.1 Study site

This study was carried out in the intertidal zone at Ko Mat Sum, Mu Ko Thale Tai National Park, Gulf of Thailand, East coast of Southern Thailand. The study site was a sand plain in the shallow zone (1-2 m in depth). The climate and seasons of this study site were described in Mayakun *et al.* (2012b). The site was visited during April-May 2011.

2.2 Physical and chemical parameters

Water temperature and salinity were measured at the site using thermometer and salinity refractometer. Water samples were collected and kept in a dark and cold box and then sent to the Central Laboratory of the Faculty of Science, Prince of Songkla University, for calcium, nitrate, and

phosphate analyses.

2.3 Density of H. macroloba

The natural density of H. macroloba was measured using two transect lines of 100 m length and a 50 cm \times 50 cm quadrat. Two line transects were placed in the Halimeda patch. Thalli were counted in three quadrats at 10 m intervals along the transect line. There were 66 quadrats in total.

2.4 Growth rate and calcium carbonate accumulation

Alizarin Red-S marking technique was used for growth assessment. 50 thalli of H. macroloba were randomly selected and marked with Alizarin Red-S. Thalli were covered with transparent bags (volume ~ 500 mL) and attached the base of thallus with wire ribbon. A concentrated solution of Alizarin Red (1 g per 100 mL of seawater) was injected into the enclosures and checked for leakage of the coloring agent. The bags were removed 24 hrs later. The Alizarin Red-S marking technique is quite difficult to carry out in the field where the tide is high or the water depth is around 2-5 meters. Snorkeling or scuba diving is necessary to dive and dye algal thalli. Also, the thallus of *Halimeda* is relatively fragile. After 18 days, the dyed thalli were collected and bought back to the laboratory. The collected thalli were cleaned of epiphytes and bleached in a 5-10 % sodium hypochloride solution for 20-30 minutes until thalli lost its green color. The segments were separated into stained (old segments) and unstained segments (new segments) (Figure 1). The number of segments in each part were counted and dried in a drying oven at 65°C to constant dry weight. The dried segments were weighed and recorded. The dry weights of the unstained segments (new segments) were used to calculate the growth rate (mg dry weight day⁻¹) as mg dry weight/18 days. After weighing, the segments were placed in 5% hydrochloric acid for 30 min to 1 hr, and then rinsed with freshwater to remove all traces of acid. Thalli were placed in a drying oven at 65°C to constant dry weight and then weighed to determine their somatic weight. The CaCO, content was calculated from the difference in dry weight of the calcified thalli and the somatic weight (van Tussenbroek and van Dijk, 2007; Sinutok et al., 2008).

Figure 1. Alizarin Red-S marking technique.

2.5 The information of growth rate and calcium carbonate accumulation

The data of growth rate and calcium carbonate accumulation of *H. macroloba* in Thai waters were assembled from literatures in order to assess the importance of *H. macroloba* as a carbon sink.

3. Results

3.1 Physical and chemical parameters:

Water temperature, salinity, calcium, nitrate, and phosphate at the study site were 28-29°C, 30-32 psu, 176.4 mg/L, 1.73 mg/L, and 0.31 mg/L, respectively.

3.2 Density

The mean natural density of H. macroloba in the intertidal zone (1-2 m in depth) at Ko Mat Sum, Mu Ko Thale Tai National Park, was 11.70 ± 1.77 thalli/m² (n = 66 quadrats) during April-May 2011. The highest density was 26.83 ± 10.1 thalli/m² and the high density was found at 10-40 meter from the shore (Figure 2). At the site, the substrate was sand plain and the depth was 1-2 m. H. macroloba grows in a sandy bottom, anchoraging by a large bulbous holdfast.

3.3 Growth rate and calcium carbonate accumulation

The average growth rate of *H. macroloba* was 20.1 mg dry weight/thallus/day. New segments were produced around 1-2 segments/thallus/day. Calcium carbonate accumulation rate of *H. macroloba* was 16.6 mg CaCO₃/thallus/day or 82.46% per thallus.

3.4 Information of growth rate and calcium carbonate accumulation of *H. macroloba*:

Only three scientific papers of growth rate and CaCO₃ accumulation rate have been found and collected (Table 1). Of these records, the growth rate of *H. macroloba* in Thai

waters was around 1-2 mg dry weight/day (Mayakun *et al.*, 2012 a,b) and the CaCO₃ accumulation rate varied around 41-91% (Sinutok *et al.*, 2008).

4. Discussion

Our results showed that the average growth rate of *H*. macroloba in the intertidal zone at Ko Mat Sum, Mu Ko Thale Tai National Park, Gulf of Thailand, was 20.1 mg dry weight/ thallus/day or it produced 1-2 new segments per thallus per day. Similarity in Halimeda tuna, its growth rate varied from 6 to 25 mg dry weight day (Vroom et al., 2003). In contrast to Sinutok et al. (2008), H. macroloba in Tangkhen Bay, Phuket Province, Andaman Sea, produced around 1.51±0.34 to 2.23±0.38 mg dry weight/thallus/day. The growth rate of H. macroloba in Ko Mat Sum was ten times greater than Halimeda in Thangkhen Bay. It might be because of the nutrient concentrations that may influence the growth rate. Mayakun et al. (2012b) found that the elevated nutrient concentration might increase the growth rate of H. macroloba at Ko Rab, Mu Ko Thale Tai National Park, Gulf of Thailand. Its growth rate was around two times higher after nutrient enrichment. The growth rates of Halimeda have been reported from many reefs such as the Great Barrier Reefs, Caribbean reefs, and Thai waters (Drew, 1983; van Tussenbroek and van Dijk, 2007; Mayakun et al., 2012 a,b).

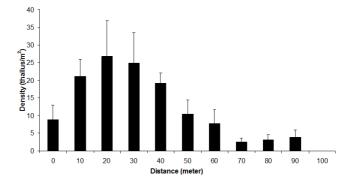


Figure 2. Density of *H. macroloba* in the intertidal zone at Ko Mat Sum, Mu Ko Thale Tai National Park, Thailand, during April-May 2011 (mean±SE).

Table 1. Data of growth rate and calcium carbonate accumulation of *H. macroloba* in Thai waters.

Halimeda macroloba				
Reference	Location	Density (Thalli/m²)	Growth rate (segments/thallus/day or mg dry weight/thallus/day)	CaCO ₃ accumulation (mg CaCO ₃ /thallus/day or %)
Sinutok <i>et al</i> . (2008)	Tangkhen Bay, Phuket Province, Andaman Sea	18.72±1.68 (summer) 5.02±0.66 (rainy season)	2.23±0.38 (summer) 1.51±0.34 (rainy season) mg dry weight/thallus/day	80.88±1.02% (summer) 67.87±1.82% (rainy season)
Mayakun <i>et al.</i> (2012 a,b)	Ko Rab, Gulf of Thailand	104±5	1-2 new segments	-

These studies revealed that the growth rates varied among species; *Halimeda opuntia* and *H. copiosa* produced one new segment every six days (Drew, 1983), while *H. incrassata* has a mean turnover of 30 days (van Tussenbroek and van Dijk, 2007). The growth rates were affected by biotic and abiotic factors, such as light intensity, nutrient concentration, and herbivore (Beach *et al.*, 2003; Vroom *et al.*, 2003).

The highest density of *H. macroloba* in this study was 26.83±10.1 thalli/m² that is similar to the density of *H. macroloba* in Thangkhen Bay with 24 thalli/m². However, in Thai waters, the highest density of *H. macroloba* was found at Ko Rab in the Gulf of Thailand, with around 104 thalli/m², and >200 thalli/m² was recorded at Lidee Island in the Andaman Sea (Mayakun *et al.*, 2012a). The relatively high density and abundance of this species might be due to its reproduction by both sexual and asexual ways.

For the calcium carbonate accumulation in Thailand, the calcium carbonate accumulation rate of *H. macroloba* was 16.6 mg CaCO₂/thallus/day or 82.46 % per thallus. Once the plants die, the carbon is still stored in the sediment. The CaCO₃ accumulation rates differ by thallus age, growth rate, photosynthesis, concentration of Ca²⁺, CO₃²⁻, CO₂, and phosphate concentration (Borowitzka and Larkum, 1976; Borowitzka, 1977). When compared to Sinutok et al. (2008), the CaCO₂ accumulation rate and calcium concentration in the present study were higher than in their study. The phosphate concentration in their study (2.09±0.65 mg/L) was 6.7 times higher than in our study. Low phosphate and high calcium concentrations in our study site could be the factors that can influence calcium carbonate precipitation, showing the high accumulation rate in our study. Björk et al. (1995) reported that increased phosphate concentrations affected calcification of the coralline algae. High concentrations of phosphate may inhibit biomineralization and can act as crystal poison, inhibiting the CaCO, precipitation and interfering with the formation of the crystal lattice (Delgado and Lapointe, 1994; Björk et al., 1995; Demes et al., 2009). However, the direct effect of added phosphate concentration on algal calcification is still unclear and further experimental studies are needed to investigate this effect.

The results are believed to be useful as a database and reference sources for the growth rate and calcium carbonate accumulation of H. macroloba that is known as a "carbon sink". However, much less is known about how much CO_2 is used and accumulated in those processes. So, there are the interesting and challenging questions that will allow us to get a better understanding of CaCO_3 accumulation and the great potential of Halimeda to decrease carbon dioxide.

Acknowledgements

We would like to thank the Seaweed & Seagrass Research Unit team, PSU, for field and laboratory supports. Special thanks to S. Pongparadon and A. Darakrai for their contribution during field and laboratory work. Financial support from Development and Promotion of Science and

Technology Talents Project (DPST) to PB and RK is acknowledged. Thanks also to M.B. Lane for his assistance with the English language.

References

- Beach, K., Walters, L., Vroom, P., Smith, C., Coyer, J. and Hunter, C. 2003. Variability in the ecophysiology of Halimeda spp. (Chlorophyta, Bryopsidales) on Conch Reef, Florida Keys, USA. Journal of Phycology. 39, 633-643.
- Björk, M., Mohammed, S. M., Björklund, M. and Semesi, A. 1995. Coralline Algae, important coral-reef builders threatened by pollution. Ambio. 24, No. 7/8, Research and Capacity Building for Sustainable Coastal Management, pp. 502-505, http://www.jstor.org/stable/4314397, Accessed: 11/06/2009 06:17.
- Borowitzka, M.A. 1977. Algal calcification. Oceanography and Marine Biology: An Annual Review. 15, 189-223.
- Borowitzka, M.A. and Larkum, A.W.D. 1976. Calcification in the green alga Halimeda, III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. Journal of Experimental Botany. 27, 879-893.
- Brownlee, C. and Taylor, A.R. 2002. Algal calcification and silification. Encyclopedia of life sciences. Macmillan Publishers Ltd, Nature Publishing Group, 1-6.
- De Beer, D. and Larkum, A. 2001. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant, Cell and Environment. 24, 1209-1217.
- Delgado, O. and Lapointe, B.E. 1994. Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate-rich tropical marine environment. Coral Reefs. 13, 151-159.
- Demes, K.W., Bell, S.S. and Dawes, C.J. 2009. The effects of phosphate on the biomineralization of the green alga, Halimeda incrassata (Ellis) Lam. Journal of Experimental Marine Biology and Ecology. 374, 123-127.
- Drew, E.A. 1983. Halimeda biomass, growth rates and sediment generation on reefs in the Central Great Barrier Reef Province. Coral Reefs. 2, 101-110.
- Drew, E.A. and Abel, K.M. 1988. Studies on Halimeda II. Reproduction, particularly the seasonality of gametangia formation, in a number of species from the Great Barrier Reef Province. Coral Reefs. 6, 207-218.
- Hillis-Colinvaux, L. 1980. Ecology and taxonomy of Halimeda: primary producer of coral reefs. Advances in Marine Biology. 17, 1-327.
- Lapointe, B.E. and Thacker, K. 2002. Community-based water quality and coral reef monitoring in the Negril Marine Park, Jamaica: land-based nutrient inputs and their ecological consequences. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. J.W. Porter and K.G. Porter, editors. CRC Press, Boca Raton, Florida, U.S.A., pp.

939-963.

- Lobban, C. and Harrison, P.J. 1994. Seaweed Ecology and Physiology. 380 pp. Cambridge University Press, New York, U.S.A.
- Mayakun, J. 2010. Algal Response to herbivore exclusion and nutrient enrichment; insights into growth, reprodution, and chemical defense. P.hD. Thesis in Ecology. Prince of Songkla University, HatYai, Thailand, 135 pp.
- Mayakun, J., Kim, J.H., Lapointe, B.E. and Prathep, A. 2012a.

 Gametangial characteristics in the sexual reproduction of Halimeda macroloba Decaisne (Chlorophyta: Halimedaceae). Songklanakarin Journal of Science and Technology. 34, 211-216.
- Mayakun, J., Kim, J.H., Lapointe, B.E. and Prathep, A. 2012b. The effects of herbivore exclusion and nutrient enrichment on growth and reproduction of Halimeda macroloba Decaisne (Chlorophyta: Halimedaceae). ScienceAsia. 38, 227-234.
- Paul, V.J. and Van Alstyne, K.L. 1988. Chemical defense and chemical variation in some tropical Pacific species of Halimeda (Halimedaceae; Chlorophyta). Coral Reefs. 6, 263-269.
- Paul, V.J. and Van Alstyne, K.L. 1992. Activation of chemical defenses in the tropical green algae Halimeda spp. Journal of Experimental Marine Biology and Ecology. 160, 191-203.

- Payri, C.E. 1988. Halimeda contribution to organic and inorganic production in a Tahitian reef system. Coral Reefs. 6, 251-262.
- Robbins, L.L., Knorr, P.O. and Hallock, P. 2009. Response of Halimeda to ocean acidification: field and laboratory evidence. Biogeosciences Discussions. 6, 4895-4918.
- Sinutok, S., Pongparadon, S. and Prathep, A. 2008. Seasonal variation in density, growth rate and calcium carbonate accumulation of Halimeda macroloba Decaisne at Tangkhen Bay, Phuket Province, Thailand. Malaysian Journal of Science. 27, 1-8.
- van Tussenbroek, B.I. and van Dijk, J.K. 2007. Spatial and temporal variability in biomass and reproduction of psammophytic Halimeda incrassata (Bryopsidales, Chlorophyta) in a Caribbean reef lagoon. Journal of Phycology, 43, 69-77.
- Vroom, P.S. and Smith, C.M. 2003. Life without cells. Biologist. 50, 222-226.
- Vroom, P.S., Smith, C.M., Coyer, J.A., Walters, L.J., Hunter, C.L., Beach, K.S. and Smith, J.E. 2003. Field biology of Halimeda tuna (Bryopsidales, Chlorophyta) across a depth gradient: comparative growth, survivorship, recruitment, and reproduction. Hydrobiologia. 501, 149-166.