
122 Least Squares and Discounted Least Squares in Autoregressive Process

Abstract
This paper reports on a comparative study between the least

squares (LS) method using rank-one update QR factorization and
the discounted least squares with direct smoothing. Both approaches
are applied to solve the problem of updating estimated parameters
in long rolling periods of time-series forecasting using the
autoregressive (AR) process. The corresponding model used in the
experiment is undamped sinusoidal data with various autoregressive
orders. The results of the study indicate that both methods improved
effectively as the model order grow. However, the discounted least
squares with direct smoothing had a more increasing rate of
improvement.

Keywords : Autoregressive process; Estimating parameter;
  Least squares; Discounted Least squares

Introduction
In many industries, forecasting has become an important tool

to reduce risk from uncertainty. Techniques can be applied to
forecast demand in order to plan the production schedule or plan
for reserving inventory or ordering material from suppliers. Such
data are time-related and highly correlated so Time Series Analysis
is a particularly significant tool. This study focused on one specific
type of Time Series Model: the Autoregressive (AR) model. The
AR model was developed by Box and Jenkins in 1970 (Box, 1994)
to analyze historical data that had relations within itself.
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In this study, the parameters were obtained from univariate
stationary autoregressive data (Kendall, 1976) when the
population mean of the process was not zero. The AR process
utilizes the least squares (LS) method, and it is an analogous way to
fit a model by minimizing the sum of square errors for estimating
parameters. The LS method uses the normal equations to
implement the linear system. The parameters can be solved by QR
factorization.

The earlier observations in LS method receive the same weight
as recent observations. However, the recent observations may be
more important for the true behavior of the process so that, in
discounted least squares method, the older observations receive
proportionally less weight than the recent ones. Another aspect is
that when periods roll for a long time, the parameters of the time
series model must be changed for updating the model. The
disadvantage in the use of LS as a forecasting method is that the
estimated parameters need to be updated at the end of each period.
This study attempted to reduce the computation time by using the
discounted least squares method with direct smoothing to fit an AR
model. Brown (1962) developed the discounted least squares
method with direct smoothing for estimating regression model
parameters.

The purpose of this study was to implement the discounted least
squares method with direct smoothing for estimating autoregressive
model parameters which were not found in previous research. As
the observation period shifts, the direct smoothing can update the
old estimates of the model parameters by smoothing them with the
forecast error for the current period to obtain the revised estimates.
In addition, a comparison between the LS method using rank-one
update QR factorization and the discounted least squares with
direct smoothing was performed. Cost and accuracy of forecasting
were two aspects to be considered in comparing the methods.
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The least squares method : In LS method, the AR model
parameters in equation (1) are estimated by minimizing the error
sum of squares :

l(φ) = Σε
t 
  .

t=1

 T
2Min

Methods
In this study, the linear stochastic stationary time series data

were fitted to an AR model by using two methods : the LS method
and the discounted least squares method. In addition, we assumed
that the population mean was known and not to be zero. We also
considered the process by using two systems of equation :
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where x

t
 is an observation at time t , φ

0
 is the scalar, and φ

i
 are the

unknown parameters. When x
t 
is a forecasting value at time t, it has

a random error ε
t 
that Ε(ε

t
) = 0 and V(ε

t
) = σ2. Equation (2) was

obtained by defining y = x - µ
x
. An  AR model is simply a linear

regression of the current value of the series against one or more
prior values of the series. The value of  p is called order of AR
model.

ε
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where “A” is a square matrix formed by using the sum of backward
elements at a time, while “x” is a parameter vector. “b” is a
right-hand side vector, and T is the end of observation time.
       When y = x-µ

x
, the system equation gives the linear systems

equation Ax = b from least squares normal equation as follows :

, (3)

. (4)

The first and second linear systems equations are solved using
the QR factorization (Golub and Van Loan, 1996). It is defined as

follows :

It gives the linear systems equation Ax = b from least squares
normal equation as follows :
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n-1             1      1           T+1

Given rotations,  G
k 
, k = 1 : n - 1 such that

                        G´   ...G´H = R       .                                       (7)

Then obtained is the QR factorization A
T+1 

= A
T 
+ u

T
v´ = Q

T+1 
R

T+1
,

where

Q
T+1 

= Q
T
J

n-1
...J

1
G

1
...G

n-1
 .                              (8)

T

 A
T+1 

= A
T 

+ u
T
v´ = Q

T 
(R

T
+ w

T
v´) ,T

H
 
= J´...J´  R

T 
.n-11    (5)

The results from this method were used as the model
parameters. The AR models were obtained and the forecast errors
computed to validate the result.

In time series analysis, data are always shifted to the next
period because the parameters must have new estimated values to
update the model. The parameters are updated by calculating
the next estimated values that employ rank one update QR
factorization as defined by Householder (Cavallo et al., 1996).

Suppose that the Q
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is the rotation in plane k and k+1. The given rotations applied

to R are shown as (Golub and Van Loan, 1996) :
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are obtained from updated Q
T 
and R

T
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The discounted least squares: The recent observations may be
more important than the older observations. This procedure is the
weighted least squares that gives a lower weight of older
observations than of the recent ones. From equation (2)

 T

y
t
 = Σ φ

i 
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t-i
 + ε

t   
where W

tt 
 is the square root of the weight given

to the tth error (Montgomery, 1990). To minimize discounted sum

of square of errors and obtain the estimated parameters, the

objective function can be stated as

t=1
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W is the  T × T diagonal matrix of square roots of the weights.

The weighted sum of square error is

W
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Then, the least squares normal equations can be written as :

Since                G (T ) = [W Y(T )]´ [W Y(T )] ,
and                                  g

i
 (T ) = Y´(T ) W 2 y ,

then                  G (T ) φφφφφT 
= g (T ) ,                     (9)

and the solution is           φ φ φ φ φi 
(T ) 

 
= G -1 (T ) g (T ) .
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L is the transition matrix (Montgomery, 1990) of the system
equation (2), that is

φ
1

φ
2

φ
3

... φ
p-1

φ
p

1 0 0 ... 0 0
0 1 0 ... 0 0     .

0 0 0 ... 0 1

...

L =

...

...

...

...

...

The transition property for system equation (2) can be described as

                             y (t + 1) = L y(t) .

Let the weights W 2 be defined as W 2        = β j
 
 when j = 0,1,...,

T - 1 and 0 < β < 1

 then G (T)  =  Σ β jy(- j)y´(- j) .

tt                                                      T-j,T-j

j= 0
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The matrix G(T) approaches a limit G , where

                            G ≡ lim G(T) = Σβ jy(- j)y´(- j) .
T ∞ j= 0

∞

Therefore G-1 needs to be computed only once. The right-hand side
of the normal equation may be written as :

g(T) = Σβ jy
T-j 

y( j) ,
or

g(T) = y
T
y(0) + βL-1g(T -1)  .

j= 0

T-1

^

Substituting for g(T) in equation (9), then we  obtain

                φ
i
 (T) = y

T
G-1y(0) + βG-1L-1Gφ(T-1) .                 (10)
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Since h = G-1y(0) and H = βG-1L-1G, then equation (10) may be
written as

                         φ
i
 (T) = hy

T
 + Hφ(T - 1) .

To simplify   φ
i
 (T)

                            L-1G = L-1G(L´)-1G ,

                           L-1G = Σ β jL-1y(-j)y´(-j)(L´)-1(L´)  ,

                         =  β -1(G- y(0)y´(0))L´ .

Substituting L-1G in  H, we now have

                                    H = (I - G-1y(0)y´(0))L´.

Substituting  h = G-1y(0) in H , we obtain

                                    H = L´- hy´(0)L´ ,

^

^

j= 0

and the single period error e
1
(T) is given by

                                  e
1
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 - y

T
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so φ
i
 (T) now becomes

                              φ
i
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i
 (T - 1) + he

1
(T) .                  (11)

The discounted least squares estimate the model parameters
shown in equation (11).  This method used to estimate the
parameters at the end of Tth period is a linear combination of
estimates made at the end of the previous period and the single-
period forecast error.

^^

^

∞
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     The transition matrix (L) of equation (1) is of the form

φ
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...
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The steps of discounted least squares method to obtain the model
parameters can be described as follows :
Step 1: Calculate G(T) when T=15,000 (assume period 15,000th

→ ∝) and  the optimal weight is defined.
Step 2: Calculate G-1(T) .
Step 3: Obtain φ

T 
.

Step 4: Forecast one step ahead.
Step 5: Calculate e

T+1 
= x

T+1 
- x

T+1 
.

Step 6: Obtain h
T 
.

Step 7: Obtain L
T 
.

Step 8: Obtain φ
T+1 

.

In this study, the undamped sinusoids autoregressive data
(Martinez, 2002) were generated with four orders of 5, 12, 20
and 30. Therefore, AR(5), AR(12), AR(20), and AR(30) were
investigated and the forecasts of those models were started at
15,000th observation by forecasting one step ahead. Then, repeated
the step of forecasting one step ahead for 1000, 5000, 10000,
15000, 20000 and 25000 times. MATLAB 7.0 was used to
generate the data while Minitab used to check the AR property. In
addition, the QR factorization and the QR rank one update were
applied by the algorithm in equations (6) - (9) using MATLAB
function. The LS method and the discounted least squares method
with direct smoothing were written as MATLAB M-file. The results
were evaluated by measuring the computation time and prediction
mean square error to compare computing cost and accuracy of the
two forecast methods, respectively.

^
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Results and discussion
The results for long rolling period forecasting of the least squares

method and the discounted least squares method indicate the
preference to the least squares. Table 1 illustrates the comparison
via the operating time, while Table 2 illustrates the comparison via
the prediction mean square error. The least squares method with
QR factorization had both less operation time and less prediction
mean square errors. However, as the order of the model grows, the
variances of data decrease. Thus, for both methods, the prediction
mean square errors were smaller. The discounted least squares with
direct smoothing method gave higher decreasing rate in prediction
mean square errors as the order of the model grew.

The update QR function in MATLAB has an accelerated tool
but the direct smoothing uses only MATLAB language in M-file,
and the discounted least squares with direct smoothing adjusts the
transition matrix in each period. For these reasons, the discounted
least squares method consumed more time than the other method.
Besides, the selected weight may not be appropriated for the
discounted least squares method and results in the higher prediction
mean square error.
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Table 1 Comparison of time of calculations to estimate parameters
obtained for long rolling periods when using two methods.

AR(5) 1000 0.621 1.052 1.131 1.783

5000 0.961 2.392 2.223 3.134

10000 1.181 5.248 4.356 5.718

15000 1.422 8.272 7.691 11.537

20000 1.733 12.097 11.456 17.435

25000 2.163 16.393 16.374 23.954

AR(12) 1000 0.691 1.132 1.532 1.732

5000 1.221 2.454 2.353 3.314

10000 1.513 5.097 4.947 6.429

15000 1.853 9.063 7.030 12.248

20000 2.273 12.888 12.307 18.016

25000 2.704 17.555 16.464 24.916

AR(20) 1000 0.862 1.552 1.813 2.293

5000 1.382 2.884 3.104 3.545

10000 2.043 6.179 5.697 6.349

15000 2.564 9.113 8.352 13.039

20000 3.134 14.541 11.136 19.368

25000 3.896 17.746 17.946 25.147

AR(30) 1000 1.222 1.763 2.804 3.004

5000 1.873 3.715 4.877 6.269

10000 3.025 7.411 8.122 9.914

15000 3.495 11.697 12.868 16.413

20000 4.337 16.323 17.953 23.584

25000 5.127 21.761 23.754 31.916

                                                                        Time (sec.)

AR(p) No. of         Least squares with        Discounted least squares

                   forecasts           QR factorization            with Direct smoothing

                                     Eq. (1)             Eq. (2)              Eq. (1)    Eq. (2)
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Table 2 Comparison of prediction mean square error of
calculations to estimate parameters obtained  for long
rolling periods when using two methods.

AR(5) 1000 15.80000 15.80000 30.80000 42.10000

5000 14.70000 14.70000 29.50000 55.40000

10000 14.60000 14.60000 31.10000 60.50000

                   15000           14.60000      14.60000 31.00000 60.50000

                   20000           14.60000      14.60000 30.70000 60.30000

                   25000           14.60000      14.60000 30.80000 61.80000

AR(12) 1000 10.90000 10.90000 14.40000 20.00000

5000 10.20000 10.20000 18.10000 109.90000

10000 10.10000 10.10000 32.00000 98.30000

15000 10.10000 10.10000 27.60000 89.10000

20000 10.10000 10.10000 37.90000 98.40000

25000 10.10000 10.10000 47.70000 118.00000

AR(20) 1000 0.68733 0.68747 0.75163 0.80624

5000 0.64041 0.64034 0.83467 1.80000

10000 0.63398 0.63394 1.00000 1.80000

15000 0.63456 0.63452 0.97123 1.70000

20000 0.63402 0.63400 1.10000 1.90000

25000 0.63398 0.63403 1.20000 2.00000

AR(30) 1000 0.68706 0.68730 0.70959 0.71029

5000 0.64085 0.64075 0.73606 1.10000

10000 0.63442 0.63415 0.80181 1.10000

15000 0.63483 0.63484 0.7871 1.00000

20000 0.63497 0.63435 0.80071 1.10000

25000 0.63430 0.63434 0.82564 1.10000

                                            Prediction Mean Square Error

AR(p) No. of         Least squares with        Discounted least squares

                   forecasts           QR factorization            with Direct smoothing

                                     Eq. (1)          Eq. (2)             Eq. (1)           Eq. (2)
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Conclusion
When forecasting a stationary autoregressive process for long

rolling periods with µ ≠ 0 , the least square with QR factorization is
appropriated, leading to higher efficiency than the discounted least
squares with direct smoothing.  The autoregressive model as in
equation (1) had more efficiency for both methods than the model
in equation (2). When the order of the model grew, both methods
had more accuracy in forecasting since the prediction mean square
errors were decreased. The discounted least squares with direct
smoothing used more operation time since the transition matrix was
adjusted in every period.

For further study, the transition matrix shoud be tried without
adjustment by time, and another weight approach should be tested.
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