MULTIPLE-LOCUS VARIABLE-NUMBER TANDEM REPEAT ANALYSIS OF BRUCELLA ISOLATES FROM THAILAND

Khurawan Kumkrong ${ }^{1}$, Phanita Chankate ${ }^{1}$, Wittawat Tonyoung ${ }^{1}$, Apiradee Intarapuk ${ }^{2}$, Anusak Kerdsin ${ }^{3}$ and Thareerat Kalambaheti ${ }^{1}$
${ }^{1}$ Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok; ${ }^{2}$ Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok; ${ }^{3}$ Miscellaneous Bacteriology Section, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand

Abstract

Brucellosis-induced abortion can result in significant economic loss to farm animals. Brucellosis can be transmitted to humans during slaughter of infected animals or via consumption of contaminated food products. Strain identification of Brucella isolates can reveal the route of transmission. Brucella strains were isolated from vaginal swabs of farm animal, cow milk and from human blood cultures. Multiplex PCR was used to identify Brucella species, and owing to high DNA homology among Brucella isolates, multiple-locus variable-number tandem repeat analysis (MLVA) based on the number of tandem repeats at 16 different genomic loci was used for strain identification. Multiplex PCR categorized the isolates into B. abortus ($n=7$), B. melitensis $(n=37)$, B. suis $(n=3)$, and 5 of unknown Brucella spp. MLVA-16 clustering analysis differentiated the strains into various genotypes, with Brucella isolates from the same geographic region being closely related, and revealed that the Thai isolates were phylogenetically distinct from those in other countries, including within the Southeast Asian region. Thus, MLVA-16 typing has utility in epidemiological studies.

Keywords: Brucella, MLVA-16 typing, tandem repeat unit, Thailand

INTRODUCTION

Brucellosis is the most widespread zoonosis in the world and is of major public health and economic importance

Correspondence: Thareerat Kalambaheti, Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi District, Bangkok 10400, Thailand.
Tel: +66 (0) 23069100 ext 1592; Fax: +66 (0) 26435583
E-mail: thareerat.kal@mahidol.ac.th
(Pappas et al, 2006). Brucella spp infect several important livestock species, such as cattle, goat, pig, sheep, and water buffalo (Di Giannatale et al, 2008). Main sign of infection in all animal species is abortion or premature expulsion of the fetus. In humans, the disease can induce undulant fever, malaise, and myalgia, and sometimes is associated with serious complications, such as encephalitis, meningitis, peripheral neuritis, spondylitis, suppurative arthritis, and vegetative endocarditis (Borriello et al, 2013). The disease can also
occur in a chronic form affecting various organs and tissues (Franco et al, 2007). The pathogen can be transmitted to humans through consumption of contaminated or untreated milk or dairy products, or by direct contact with infected animals (Borriello et al, 2013). As no effective human vaccine is currently available, prevention and control of brucellosis rely on its early diagnosis, adequate antibiotic treatment, proper animal husbandry and hygienic products.

Because of genetic homogeneity within the genus Brucella, subtyping isolates remains a challenge. In 1965, genus Brucella contained three classic species, namely, B. abortus (associated host: cattle), B. melitensis (sheep and goat), and B. suis (swine) (Olsen and Palmer, 2014). However, since the early 1960s, at least 7 new species have been identified in the genus Brucella: B. ovis, isolated from a ram in 1952 (Simmons and Hall, 1953), B. canis from placental and fetal tissues of aborted beagle pups (Carmichael and Kenney, 1968), B. neotomae from desert wood rat (Stoenner and Lackman, 1957), B. ceti predominantly from porpoise and dolphin (Foster et al, 2007), B. pinnipedialis predominantly from seal (Foster et al, 2007), B. microti from vole and wild red fox (Scholz et al, 2009), and B. inopinata from an infected human breast implant (Scholz et al, 2010). Further isolates have been recovered from wild Australian rodents (Tiller et al, 2010) and from a human patient with chronic destructive pneumonia (Tiller et al, 2010), which was suggested to be a novel lineage of B. inopinata. Most recently by Hofer et al (2012), two atypical Brucella strains were isolated from two foxes in eastern Austria and placed in the genus Brucella, but molecular analysis of rec A and omp $2 a / b$ indicated that they are novel species, distinct from other Brucella
species, including B. microti (Al Dahouk et al, 2012). Other potential new strains, with characteristics typical of Brucella, have recently been recovered from two stillborn baboons (Papio sp) (Schlabritz-Loutsevitch et al, 2009) and from an African bullfrog (Pyxicephalus edulis) (Eisenberg et al, 2012).

Development of strain-typing methods is essential for investigating sources of epidemic events. Multiple-locus variablenumber tandem repeat analysis (MLVA), based on the variability in copy numbers of tandem repeat units in several loci, has discriminatory potential for genotyping and epidemiological trace-back assessment (Al Dahouk et al, 2007). This assay is capable of discriminating Brucella isolates originating from a restricted geographic region, confirming its potential utility as an epidemiological tool (Garcia-Yoldi et al, 2007; Kattar et al, 2008; Marianelli et al, 2008).

MLVA-16 assay, based on 16 loci containing tandem repeats, including eight moderately variable minisatellites and eight highly polymorphic microsatellites (Le Fleche et al, 2006; Al Dahouk et al, 2007), were used in this study to characterize the diversity of Brucella strains isolated from vaginal swabs of farm animals and from culture collections obtained from Thai infected patients.

MATERIALS AND METHODS

Sample collection

Vaginal swabs and milk specimens were collected from cattle and goats on farms in central Thailand: Kanchanaburi, Nakhon Pathom, Nakhon Sawan, Prachuap Khiri Khan, Ratchaburi, and Saraburi. Vaginal swabs were placed in Cary Blair transport medium (Oxoid, Hampshire, UK) and maintained at $4^{\circ} \mathrm{C}$ during transportation.

Human isolates were obtained from culture collection of the Medical Bacteriology Group, Department of Medical Science, National Institute of Health (NIH), Bangkok, Thailand. All strains were derived from human blood cultures obtained from various Thai provinces, which had been sent to NIH, Thailand for bacterial identification.

Ethical approval to collect vaginal secretions from goats and cows was obtained from the Faculty of Tropical Medicine Animal Care and Use Committee, Mahidol University (FTM-ACUC; 008/2007). A material transfer agreement permitted analysis of Brucella strains isolated from patients, which had been sent for identification to the Department of Medical Sciences, NIH, Ministry of Public Health, Bangkok, Thailand. All the samples were anonymized, except for the province of each hospital from which the isolate was collected, which was retained.

Brucella culturing

A portion of each vaginal swab was streaked onto Brucella agar [trypticase soy agar with antibiotic supplement (Oxoid, Hamshire, UK) and 5\% horse serum (Gibco, Gaitherberg, MD)]. The other vaginal swab portion and the milk samples were enriched in biphasic agar (Brucella agar slant overlaid with tryptic soy broth) for 5-7 days and bacterial film from the agar slant was restreaked on Brucella agar. All cultures were incubated for 5 days under $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. Single colonies were preliminarily identified as Brucella spp by gram-negative coccobacilli appearance, which were positive in an oxidase test (Yagupsky, 1999). The putative Brucella strains were propagated on Brucella agar plates and a proportion were kept as glycerol stocks at $-70^{\circ} \mathrm{C}$, and the remaining were placed in normal saline, sedimented
and stored at $-70^{\circ} \mathrm{C}$ until used.

Multiplex PCR assay

Genomic DNA was extracted from bacterial cell pellet using a commercial DNA extraction kit (Omega Bio-Tek, Norcross, GA), according to the manufacturer's instructions, and stored at $4^{\circ} \mathrm{C}$ until analyzed. Stock Brucella strains (denoted B1-B4) in our culture collection were investigated for species. Eight primer pairs (Table 1) (López-Goñi et al, 2008) were in a PCR mixture of $25 \mu \mathrm{l}$ containing $12.5 \mu \mathrm{l}$ of JumpStart ${ }^{\text {TM }}$ REDTaq ${ }^{\circledR}$ ReadyMix ${ }^{\text {TM }}$ (Sigma, St Louis, MO), 8μ l of primer mix ($10 \mathrm{pmol} / \mu \mathrm{l}$), and $2 \mu \mathrm{l}$ of DNA template. Thermocycling was conducted in a Mastercycler Nexus instrument (Effpendorf, Hamberg, Germany) as follows: $95^{\circ} \mathrm{C}$ for 5 minutes; followed by 34 cycles of $94^{\circ} \mathrm{C}$ for 1 minute, $55^{\circ} \mathrm{C}$ for 1 minute, and $72^{\circ} \mathrm{C}$ for 1 minute; then a final heating at $72^{\circ} \mathrm{C}$ for 7 minutes. Amplicons were separated by 1.5% agarose gel-electrophoresis and visualized by ethidium bromide staining. Brucella spp were assigned based on the PCR profiles (Table 2) according to LópezGoñi et al (2008).

MLVA-16 genotyping assay

MLVA-16 genotyping was performed as described by Le Fleche et al (2006) and modified by Al Dahouk (2007). In brief, PCR amplification was performed as described above but with 16 primer pairs (Table 3) divided into three panels, namely, panel 1 for species identification and containing primers that bind eight minisatellite loci (Bruce06, Bruce08, Bruce11, Bruce12, Bruce42, Bruce43, Bruce45, and Bruce55), panel 2A containing primers that bind three microsatellite loci (Bruce18, Bruce19, and Bruce21), and those of panel 2B bind five microsatellite loci, Bruce04, Bruce07, Bruce09, Bruce16, and Bruce30), and panel 2B containing

Table 1
Primers used in multiplex PCR determination of Brucella sp.

No.	Primer ${ }^{\text {a }}$	Putative function of target gene	DNA sequences ($5^{\prime}-3^{\prime}$)	Length (bp)
1	BMEI0998F	Glycosyltransferase (wboA)	ATCCTATTGCCCCGATAAGG	1,682
	BMEI0097R		GCTTCGCATTTTCACTGTAGC	
2	BMEI0535F	Immunodominant antigen (bp26)	GCGCATTCTTCGGTTATGAA	450
	BMEI0536R		CGCAGGCGAAAACAGCTATAA	
3	BMEII0834F	Outer membrane protein (omp31)	TTTACACAGGCAATCCAGCA	1,071
	BMEII0843R		GCGTCCAGTTGTTGTTGATG	
4	BMEI1436F	Polysaccharide deacetylase	ACGCAGACGACCTTCGGTAT	794
	BMEI1435R		TTTATCCATCGCCCTGTCAC	
5	BMEII0428F	D-Erytrulose1-phosphate dehydrogenase (eryC)	GCCGCTATTATGTGGACTGG	587
	BMEII0428R		AATGACTTCACGGTCGTTCG	
6	BR0953F	ABC transporter binding protein	GGAACACTACGCCACCTTGT	272
	BR0953R		GATGGAGCAAACGCTGAAG	
7	BMEI0752F	Ribosomal protein S12 (rpsL)	CAGGCAAAGCCTCAGAAGC	218
	BMEI0752R		GATGTGGTAACGCACACCAA	
8	BMEII0987F	Transcription regulator	CGCAGACAGTGACCATCAAA	152
	BMEII0987R		GTATTCAGCCCCCGTTACCT	

${ }^{\text {a }}$ Based on B. melitensis (BME) and B. suis (BR) genome sequences.

Table 2
Brucella species-specific genes used in the study.
$\left.\begin{array}{lcccccccc}\hline \begin{array}{l}\text { Specific } \\ \text { gene/locus }\end{array} & \text { wboA } & \text { omp31 } & \begin{array}{c}\text { Poly } \\ \text { sacharide }\end{array} & \text { eryC } & \text { Bp26 } & \begin{array}{c}\text { ABC } \\ \text { deacetylase } \\ \text { transporter } \\ \text { binding } \\ \text { protein }\end{array} & \text { rpsL } & \begin{array}{c}\text { Transcrip- } \\ \text { tional }\end{array} \\ \text { regulator } \\ \text { (CRP }\end{array}\right]$
${ }^{\text {a}}$ Human source: DMST7, DMST9; animal source: Kog milk, Yim-M, Yim-V, A18 swab. ${ }^{\text {b }}$ Human source: DMST1, DMST2, DMST3, DMST4,DMST5, DMST6, DMST10, DMST11,DMST12, DMST13, DMST14, DMST15, DMST16, DMST17, DMST19; animal source: 29M, 29S, 34S, 43S, S24, S19, S16, S25, R-14, R-55, R-13, R-48, A19 swab, P1 swab, L5-milk, L5-swab, L6-milk, F18 swab, F25 milk, E37
 source: DMST20; animal source: R18.

${ }^{a}$ Variable number of tandem repeat: nomenclature_repeat unit size (size from genome of B. melitensis 16M strain). Chr, chromosome.

Table 4
Brucella spp and hosts found in Thailand.

	Host				
Brucella sp	Human	Caprine	Bovine	Laboratory stock	Total
B. melitensis	15	22^{a}	-	-	37
B. abortus	2	2^{b}	3 c	-	7
B. suis	3	-	-	-	3
Unidentified Brucella sp	1	-	-	4	5
Total	21	24	3	4	52

${ }^{\text {a }}$ Four isolates from Saraburi, 4 from Nakhon Sawan, 4 from Ratchaburi, and 10 from Nakhon Pathom. ${ }^{\text {b }}$ Strain R18 from Ratchaburi has profile similar to S19 vaccine strain and A18 swab, isolated from Nakhon Pathom, had typical B. abortus profile. 'One Kog milk strain was from Prachuap Khiri Khan and strains Yim-M and Yim-V were from Kanchanaburi.
primers that bind the most variable loci [thereby given a lower weight in a clustering analysis (Al Dahouk et al, 2007)]. Amplicons were separated by 3% agarose gel- electrophoresis as described above. Gel images were recorded in a Syngene gel documentation instrument (Frederick, MD) using GeneRuler ${ }^{\text {TM }} 100-b p$ Plus DNA ladder (Thermo Scientific) as standard molecular size markers. Sizes of amplicons from alleles at each locus were also confirmed using an Agilent 2100 highresolution capillary electrophoresis Bioanalyzer (Santa Clara, CA) according to the manufacturer's instructions. The sizes of amplicons generated from each locus were converted into tandem repeat units according to procedures and database of Le Fleche et al (2006) and Al Dahouk et al (2007). The species of each Brucella isolate obtained from multiplex PCR was used to predict the tandem repeat units based on the size of amplicons (alleles) derived from each locus, because the prediction from repeat units is more reliable when the Brucella species is known.

Genetic diversity index determination

In order to obtain genetic diversity index for all Brucella isolates in this study,
copy numbers of tandem repeats at each of the 16 loci were analyzed using V-DICE (VNTR DIversity and Confidence Extractor) program (http://www.hpa-bioinfor-matics.org.uk/cgi-bin/DICI/DICI.pl). A polymorphism index was determined, based on Simpson's diversity output data, which measures the variation among the numbers of repeats at each locus, ranging from 0.0 (no diversity) to 1.0 (complete diversity). The precision of the diversity index (DI) is expressed with the 95% confidence interval (CI).

Data analysis

Tandem repeat units for the 16 loci of Brucella isolates predicted from their allele sizes were considered as datasets. BioNumerics version 6.6 (Applied Math, Austin, TX) was used to analyze the datasets and to generate a dendrogram. General information for each isolate was recorded, viz, sample name, type of infected host, province of the source farm. Archived tandem repeat profiles for Brucella strains from other countries (Her et al, 2009; Maquart et al, 2009; Lista et al, 2011) were added to our Thai dataset. These character data were subjected to a clustering analysis, based on unweighted pair group method
Table 5
Repeat unit data from MLVA-16 locus among Brucella isolates in Thailand and strains from MLVA database.

Laboratory ID\#	Host	Source	$\begin{array}{cc} \text { Multiplex } & \text { Position } \\ \text { PCR } & \text { in } \\ \text { species } & \text { MLVA } \\ \text { identification } & \text { cluster } \end{array}$		Repeat unit data set of MLVA-16 locus															
Sample ID						8	11	12	42	43	45	55	18	19	21	4	7	9	16	30
${ }^{\text {a }}$ DMST 1 D	human	Chon Buri	B. melitensis	A		6	4	13	3	3	3	2	5	22	8	5	4	4	7	7
					156*	379	359	391	412	254	158	237	143	186	165	175	152	128	188	159
${ }^{\text {a }}$ DMST 2 D	human	Samut Prakan	B. melitensis	A	1	6	4	13	3	3	4	2	5	22	8	5	4	4	7	7
DMST 22192					155	379	363	384	418	193	167	238	145	186	168	178	154	133	186	161
${ }^{\text {a }}$ DMST 3 D	human	Chaiyaphum	B. melitensis	A	1	5	4	14	3	3	4	2	6	22	8	6	4	5	8	7
DMST 23233					142	363	361	400	421	195	172	237	150	189	168	182	154	137	198	156
aDMST 4	human	Chai Nat	B. melitensis	A	1	6	4	14	3	3	4	2	6	23	9	16	6	5	7	8
					146	381	361	406	398	195	174	237	152	190	170	264	162	141	182	170
${ }^{\text {a }}$ DMST 5 D	human	Chai Nat	B. melitensis	A	1	6	4	14	3	3	4	2	6	23	9	16	6	5	7	7
DMST 23564					146	385	361	409	398	195	174	237	154	190	170	268	164	143	182	154
${ }^{\text {a DMST } 6} 6$ DMST 23565	human	Sa Kaeo	B. melitensis	A	1	6	4	14	3	3	4	3	6	23	9	12	6	6	6	9
					145	385	359	388	398	195	179	275	154	192	172	236	164	148	172	175
	human	Chaiyaphum	B. abortus	A	3	6	4	13	2	3	4	4	8	23	9	5	8	6	4	7
					408	386	352	364	311	195	179	273	173	193	170	178	186	145	160	156
${ }^{\text {a DMST }} 10$ DMST 24387	human	Sa Kaeo	B. melitensis	A	1	5	3	16	3	3	4	3	6	23	9	12	5	6	7	9
					143	371	326	431	396	195	179	275	154	198	177	234	154	148	186	178
aDMST 11 DMST 24734	human	Uttaradit	B. melitensis	A	1			16	3	3	4	3	6	23	9	7	5	7	10	7
					143	365	323	431	398	195	179	275	154	198	179	192	158	151	207	156
a ${ }^{\text {DMST } 12 ~ D M S T ~} 25484$	human	Suphan Buri	B. melitensis	A	1	6	3	16	3	3	4	3	6	25	9	11	5	6	9	9
					144	385	315	434	398	195	179	236	150	201	172	229	158	149	200	178
a DMST 13 DMST 26165	human	Uttaradit	B. melitensis	A	1	6	3	16	3	3	4	3	5	25	9	7	5	7	10	7
					144	378	323	431	398	195	177	275	148	203	172	199	158	151	207	156
aDMST 14 DMST 26346	human	Chanthaburi	B. melitensis	A	1	6	3	16	3	3	4	3	5	25	9	15	5	6	8	9
					145	387	323	431	398	195	174	275	143	201	179	257	156	149	196	177
${ }^{\text {a }}$ DMST 15 DMST 27015	human	Kanchanaburi	B. melitensis	A	1	6	3	16	3	3	4	3	4	25	9	7	4	6	9	9
					144	385	320	437	398	229	169	275	139	200	175	193	154	146	204	178
${ }^{\text {a DMST }} 16$ DMST 27016	human	Kanchanaburi	B. melitensis	A	1	6	3	16	3	3	4	3	4	25	9	7	4	5	10	9
					142	384	323	437	398	190	167	275	137	200	170	192	147	143	205	177
adMST 17 DMST 27020	human	Chanthaburi	B. melitensis	s A	1	6	3	12	3	3	2	2	4	21	9		6	8	7	9
					142	385	318	388	398	196	12	237	135	183	170					

${ }^{\text {a }}$ DMST 18 DMST 30490	human	Chanthaburi	B. suis	A
${ }^{\text {a }}$ DMST 19 DMST 30491	human	Sa Kaeo	B .melitensis	A
${ }^{\text {a }}$ DMST 20 DMST 30844	human	Phetchabun	Brucella spp	A
29M	caprine	Saraburi	B. melitensis	A
29 S	caprine	Saraburi	B. melitensis	A
34 S	caprine	Saraburi	B. melitensis	A
43 S	caprine	Saraburi	B. melitensis	A
S24	caprine	Nakhon Sawan	B. melitensis	A
S19	caprine	Nakhon Sawan	B. melitensis	A
S16	caprine	Nakhon Sawan	B.melitensis	A
S25	caprine	Nakhon Sawan	B. melitensis	A
R-14	caprine	Ratchaburi	B. melitensis	A
R-55	caprine	Ratchaburi	B. melitensis	A
R-13	caprine	Ratchaburi	B. melitensis	A
R-48	caprine	Ratchaburi	B. melitensis	A
A19 swab	caprine	Nakhon Pathom	B. melitensis	A
P1 swab	caprine	Nakhon Pathom	B. melitensis	A
L5-Milk	caprine	Nakhon Pathom	B. melitensis	A
L5-Swab	caprine	Nakhon Pathom	B. melitensis	A

Table 5 (Continued).

Laboratory ID\#	Sample ID	Host	Source	Multiplex Position PCR in species MLVA identification cluster		Repeat unit data set of MLVA-16 locus															
						6	8	11	12	42	43	45	55	18	19	21	4	7	9	16	30
L6-Milk		caprine	Nakhon Pathom	B. melitensis	s A	1	5	3	12	3	2	4	2	7	25	9	9	8	7	8	9
						138	367	333	388	398	185	151	237	163	202	179	208	182	151	195	176
F18 swab		caprine	Nakhon Pathom	B. melitensis	s A	1	5	3	11	3	2	3	2	6	23	9	8	8	5	8	9
						147	359	320	364	398	254	152	237	153	192	173	204	187	140	195	175
F25 milk		caprine	Nakhon Pathom	B. melitensis	S A	1	5	3	11	3	2	3	2	6	23	9	9	8	5	4	9
						147	367	320	364	398	185	152	237	156	194	170	205	182	141	160	175
E37 swab		caprine	Nakhon Pathom	B. melitensis	S A	1	5	3	13	3	3	3	2	7	25	9	9	8	7	6	9
						147	365	325	396	398	193	152	237	165	200	176	206	183	151	175	178
E74 swab		caprine	Nakhon Pathom	B. melitensis	S A	1	5	3	13	3	3	3	2	7	25	9	9	8	7	9	9
						149	368	328	396	398	195	152	237	163	200	176	206	182	151	204	178
P9 swab		caprine	Nakhon Pathom	B. melitensis	S A	1	5	3	14	3	3	4	3	7	25	9	9	8	7	6	8
						141	371	334	408	398	195	158	275	165	214	176	206	182	155	175	167
${ }^{2} \mathrm{MM} 154$	S596	human	Paris, France	B. melitensis	S	1	5	3	13	3	2	3	2	4	40	8	5	4	8	6	9
${ }^{2}$ RR179	AUB BRUP-S24	human	Lebanon	B. melitensis	B	1	5	3	13	3	2	3	2	4	40	8	5	5	8	7	9
${ }^{2}$ W173	AUB BRUP-S14	human	Lebanon	B. melitensis	B	1	5	3	13	3	2	3	2	4	40	8	5	5	9	6	6
${ }^{2}$ W178	AUB BRUP-S23	human	Lebanon	B. melitensis	B	1	5	3	13	3	2	3	2	5	40	8	5	5	7	5	6
${ }^{2} \mathrm{H} 233$	BfR X	human	Bosnia	B. melitensis	B	1	5	3	13	3	2	3	2	4	40	8	7	4	3	7	8
${ }^{2} \mathrm{~W} 169$	AUB BRUP-S11	human	Lebanon	B. melitensis	S	1	5	3	13	3	2	3	2	4	40	8	3	4	3	7	6
${ }^{2} \mathrm{H} 234$	BfR VII	human	Syria	B. melitensis	B	1	5	3	13	3	2	3	2	4	40	8	4	4	3	4	4
${ }^{2} \mathrm{~V} 221$	BfR 62	human	Iraq	B. melitensis	B	1	5	3	13	3	2	3	2	4	40	8	4	4	3	4	5
${ }^{2}$ W172	AUB BRUP-S13	human	Lebanon	B. melitensis	B	1	5	3	13	3	2	3	2	4	40	8	4	4	3	7	4
${ }^{2} \mathrm{~W} 171$	AUB BRUP-S12	human	Lebanon	B. melitensis	B	1	5	3	13	3	2	3	2	4	40	8	5	4	3	5	5
${ }^{2} \mathrm{~W} 175$	AUB BRUP-S20	human	Lebanon	B. melitensis	S B	1	5	3	13	3	2	3	2	4	40	8	8	3	3	5	4
${ }^{2} \mathrm{~W} 177$	AUB BRUP-S22	human	Lebanon	B. melitensis	S	1	5	3	13	3	3	3	2	4	40	8	5	4	3	8	4
${ }^{2} \mathrm{~W} 176$	AUB BRUP-S21	human	Lebanon	B. melitensis	S	1	4	3	13	3	2	3	2	4	40	8	8	4	3	8	5
${ }^{2} \mathrm{GG} 105$	BfR 68	human	Tyrol, Germany	B. melitensis	S	1	5	3	13	2	2	3	2	3	42	8	4	4	3	7	6
${ }^{2} \mathrm{MM} 152$	S594	human	Paris, France	B. melitensis	S	1	5	3	13	2	3	3	2	4	40	8	4	4	3	4	6
${ }^{2}$ MM153	S595	human	Poitiers, France	B. melitensis	S B	1	5	3	13	3	2	2	2	6	10	8	7	4	3	5	6
${ }^{2} \mathrm{MM} 156$	S219	human	Tarbes, France	B. melitensis	B	1	5	3	13	3	2	2	2	6	10	8	4	4	3	6	6
${ }^{2} \mathrm{MM} 158$	S220	human	Agen, France	B. melitensis	S	1	5	3	13	3	2	3	2	5	10	8	3	4	3	5	5
${ }^{2} \mathrm{H} 232$	BfR 20	human	Pakistan	B. melitensis	S	3	5	3	13	3	2	3	3	6	40	8	7	4	5	5	3

Table 5 (Continued).

Laboratory ID\#	Sample ID	Host	Source	Multiplex Position PCR in species MLVA identification cluster		Repeat unit data set of MLVA-16 locus															
						6	8	11	12	42	43	45	55	18	19	21	4	7	9	16	30
${ }^{2}$ V215	R5	sheep	South Africa	B. melitensis	C	3	4	2	13	4	2	3	3	8	36	6	2	4	6	4	6
${ }^{2}$ TT74	R26	(commer- cial)	Spain	B. melitensis	C	3	4	2	13	4	2	3	3	8	36	6	2	5	5	3	6
${ }^{2}$ T177	BCCN\#92-87	sheep	Spain	B. melitensis	C	3	4	2	13	4	2	3	3	8	36	6	2	5	6	3	6
MM126		human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
${ }^{2} \mathrm{MM} 127$	S22	human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
${ }^{2} \mathrm{MM128}$	S23	human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
${ }^{2} \mathrm{MM129}$	S211	human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
${ }^{2} \mathrm{MM131}$	S212	human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
MM132		human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
${ }^{2}$ MM133	S230	human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
${ }^{2}$ MM134	S72	human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
${ }^{2}$ MM135	S73	human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
${ }^{2}$ MM136	S243	human	Callao, Peru	B. melitensis	C	3	4	2	13	5	2	3	3	7	36	6	2	5	7	4	4
a DMST 21 DMST 31267		human	Nakhon	B. suis	C	3	4	3	13	3	2	3	3	5	21	6	2	5	8	3	8
			Phanom			244	346	669	328	397	196	186	237	135	195	170	195	154	172	177	165
${ }^{\text {a }}$ DMST 8	DMST 23728	human	Phetchabun	B. suis	C	3	4	3	13	3	2	3	3	6	21	6	2	5	10	3	8
						264	354	726	391	397	237	186	237	166	192	187	197	168	209	170	156
${ }^{2}$ MM151	S202	human	Essonne, France	B. melitensis	C	3	4	3	14	5	2	3	3	6	36	5	2	4	6	5	4
${ }^{2}$ RR184	FH 2208	red fox	Austria	B. microti	D	4	5	12	13	5	2	5	6	10	8	9	8	6	7	11	5
${ }^{2}$ RR185	FK 21908	red fox	Austria	B. microti	D	4	5	12	13	5	2	5	10	6	8	9	10	6	9	11	5
${ }^{2} \mathrm{KK} 122$	M621/99/2	gray seal	Scotland	B. pinnipedialis	lis D	3	5	6	13	3	2	5	4	7	44	9	6	6	4	3	3
${ }^{2} \mathrm{~J} 207$	100 V	sheep	Brazil	B. ovis	D	3	5	2	10	1	1	5	2	3	8	9	8	4	13	13	2
${ }^{2}$ MM148	BCCN\#77-7	sheep	Nice, France	B. ovis	D	3	5	2	10	1	1	5	2	3	8	9	8	6	13	9	2
${ }^{2}$ MM149		sheep	Rennes, France	B. ovis	D	3	5	2	10	1	1	5	2	3	8	7	7	6	10	8	2
${ }^{2}$ LL41		swine	Ribatejoe	B. suis	D	2	5	8	9	5	1	5	5	6	19	9	8	5	15	2	6
Used in Fig 2																					
${ }^{2} \mathrm{~S}-25$		swine	Badajoz, Spain	B. suis		2	5	8	9	5	1	5	5	6	38	9	2	5	19	2	6
${ }^{2} \mathrm{~S}-97$		swine	Croatia	B. suis		2	3	6	10	4	1	5	2	4	38	9	2	7	8	5	3
${ }^{2} \mathrm{BCCN} \# 87-57$		human	Canada	B. suis		2	3	9	11	3	1	5	2	4	40	9	5	5	10	10	3
${ }^{2}$ REF 1330		swine	USA	B. suis		2	3	6	10	4	1	5	2	4	19	9	6	6	5	5	3

\downarrow	\cdots	＋	\cdots	\bigcirc	＋	\bigcirc	\bigcirc	＋	N	N	10	$\cdots \cdots$
N	\bigcirc	N	10	\cdots	10	N	\cdots	＋	の		\cdots	$\wedge \infty$
$\stackrel{\infty}{\sim}$	σ	$\stackrel{\infty}{\sim}$	10	m	\cdots	\cdots	\cdots	N	$\stackrel{m}{\square}$		m	\bigcirc
の	10	の	\bigcirc	＋	＋	\downarrow	＋	10	\bigcirc	$\not+$	N	010

の	\bigcirc	の	\bigcirc	∞	∞	∞	∞	\bigcirc	の	の	∞	の	の
N	$\stackrel{\infty}{\sim}$	$\stackrel{3}{7}$	∞	$\stackrel{7}{7}$	F	¢	Y	\cdots	∞	∞		¢	O
\bigcirc	10	\bigcirc	＋	\bigcirc	＋	＋	\bigcirc	N	\cdots	\cdots	\bigcirc	10	10
N	N	N	N	\cdots	N	N	m	\cdots	N	N	\cdots	N	N
10	10	10	10	\cdots	\cdots	\cdots	\cdots	\cdots	10	10	\cdots	10	10
\leftharpoondown	Γ	Γ	\checkmark	\cdots	N	N	\cdots	N	\leftharpoondown	\leftharpoondown	\cdots	\leftharpoondown	\square
\bigcirc	\cdots	\bigcirc	＋	N	N	N	N	10	\leftharpoondown	\checkmark	N	\cdots	\cdots
\pm	\ni	$\stackrel{\downarrow}{\square}$	\bigcirc	$\underset{\sim}{N}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{m}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	\bigcirc	$\underset{\bigoplus}{\ominus}$	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\square}$	三
∞	の	∞	\bigcirc	\forall	\cdots	\cdots	\downarrow	N	N	N	\downarrow	の	の
＋	\cdots	＋	\cdots	10	10	10	10	\nsim	10	10	10	\cdots	\cdots
N	N	N	N	＋	\leftharpoondown	－	\downarrow	\cdots	\cdots	\cdots	\downarrow	N	N

${ }^{2}$ REF Thomsen	swine	Denmark	B．suis
${ }^{2}$ REF 40	reindeer	Former USSR	B．suis
${ }^{4}$ ATCC 23445 （NC＿010169．1）			B．suis
${ }^{4} 1330$			B．suis
${ }^{4}$ A13334			B．abortus
${ }^{4}$ ATCC 23457 （NC＿012441．1）			B．melitensis
${ }^{4} \mathrm{HB} 07-12$	sheep	Hebei，China	B．melitensis
${ }^{4} \mathrm{KBa} 0143$	cattle （dairy）	South Korea	B．abortus
${ }^{4} \mathrm{~S} 152$	human	Callao，Peru	B．melitensis
${ }^{4} \mathrm{BCCN} \# 77-72$	sheep	Nice，France	B．ovis
${ }^{4} 100 \mathrm{~V} 2$	Sheep	Brazil	B．ovis
${ }^{4}$ REF 23082		USA	B．abortus
${ }^{4}$ ATCC 23365 （NC＿010103．1）			B．canis
${ }^{4} \mathrm{HSK}$ A52141（NC＿016778．1）			B．canis

${ }^{\text {a }}$ National Institute of Health（NIH），Medical Bacteriology Group，Department of Medical Science in Thailand．${ }^{\text {b }}$ Department of Microbiology and Immunology，Faculty of Tropical Medicine，Mahidol University，Bangkok，Thailand．${ }^{1}$ Lista et al（2011）．${ }^{2}$ Maquart et al（2009）．${ }^{3}$ Her et al（2009）．${ }^{4}$ Database from http：／／minisatellites．u－psud．fr．＊Amplicon size（bp）． \＃Used in Fig 1.
using arithmetic averages（UPGMA） with a categorical similarity coefficient． Maximum parsimony was used to draw a clustering tree，with 200 bootstrap simulations，and the data were treated as categorical．

RESULTS

Species of Brucella isolates determined by multiplex PCR

From 2009 to 2011， 300 vaginal swabs and 10 milk samples were collected from farms in central Thailand．Bacterial colo－ nies grown on Brucella－selective agar and screened for gram－negative coccobacilli with positive oxidase test were propa－ gated on Brucella－selective agar．Extracted bacterial DNA was subjected to multiplex PCR for Brucella species identification （Table 2）．Twenty－two isolates from goats and 15 from humans were identified as B ． melitensis（Table 4）．Among the seven iso－ lates identified as B．abortus，two were from caprines，two from humans（DMST 7 from Chaiyaphum and DMST 9 from Chantha－ buri），and three from cows（Kog milk，Yim－ V，and Yim－M）．Three B．suis isolates were from humans（DMST 18 from Chanthaburi， DMST 8 from Phetchabun and DMST 21 from Nakhon Phanom）．The multiplex PCR bands for DMST 20 （from Phetchabun）are similar to those of B ．melitensis，but lacks the 1682 bp，and so was likely to be B．ovis （Table 4）．The four reference Brucella strains （B1－B4）and R－18 strain have multiplex PCR profiles（bands at 152，450，794，and 1682 bp similar to that of B．abortus S－19 strain（Garcia－Yoldi，2006）．
Assignment of tandem repeat units for each allele size

Brucella strain signature was identi－ fied using an MLVA－16 typing scheme． The sizes of amplicons derived from 16 loci in all the isolates were determined by

Table 6
Simpson's diversity index (DI) for all loci of Brucella spp determined in the study.

	DI			
Locus	Whole population $(n=52)$	B. melitensis $(n=37)$	B. abortus $(n=11)$	B. suis $(n=3)$
Panel 1				
Bruce06	0.498	0.153	0.298	0.444
Bruce08	0.665	0.622	0.165	0
Bruce11	0.669	0.546	0.314	0.444
Bruce12	0.783	0.758	0.512	0.444
Bruce42	0.423	0.149	0.165	0
Bruce43	0.465	0.234	0.165	0.444
Bruce45	0.570	0.505	0.298	0.444
Bruce55	0.514	0.438	0.165	0.444
Panel 2A				
Bruce18	0.751	0.735	0.612	0
Bruce19	0.811	0.730	0.512	0.444
Bruce21	0.418	0.149	0.165	0.444
Panel 2B				
Bruce04	0.865	0.863	0.165	0.444
Bruce07	0.743	0.673	0.430	0.444
Bruce09	0.814	0.793	0.446	0.444
Bruce16	0.826	0.856	0.165	0.444
Bruce30	0.760	0.722	0.165	0.444

One isolate, DMST20, predicted to be B. ovis was not included for determination of diversity index.
agarose gel- electrophoresis and capillary electrophoresis. The range of amplicon size for each allele was used to determine the number of tandem repeat units, based on data of Al Dahou et al (2007) and Le Fleche et al (2006). In this study, the variable allele types were predominantly found in Bruce 11, and the numbers of repeat units were higher for the loci of panel 2 than for those of panel 1 (Table 5). MLVA profiles of all the Thai Brucella isolates and some selected Brucella species and strains from other countries also are shown in Table 5.

Genetic diversity

Simpson's diversity index (DI) revealed that the variable allele types were
predominantly found in Bruce 04 ($\mathrm{DI}=$ 0.865) (Table 6). The numbers of repeat units were higher for loci of panel 2 ($\mathrm{DI}=$ $0.418-0.865$) than for those of panel 1 (DI $=0.423-0.783$).

Clustering analysis based on MLVA-16 genotyping

The character dataset for the tandem repeat units at 16 loci in Brucella genome was subjected to a clustering analysis. A dendrogram was constructed using UPGMA protocol for 52 Thai isolates (Fig 1). Isolates from several countries (in Europe, Central and South America, and Southeast Asia), selected from the Brucella genotyping public database were included for comparison. The closely-

MLVA of Brucella Isolates from Thailand
(108 entries)
$\begin{array}{lllllllll}20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100\end{array}$

Key	Host	Source	Specie
L5-Milk	caprine	Nakhon Pathom	B. melitensis
L5-Swab	caprine	Nakhon Pathom	B. melitensis
L6-Milk	caprine	Nakhon Pathom	B. melitensis
F18 swab	caprine	Nakhon Pathom	B. melitensis
F25 milk	caprine	Nakhon Pathom	B. melitensis
E37 swab	caprine	Nakhon Pathom	B. melitensis
E74 swab	caprine	Nakhon Pathom	B. melitensis
P9 swab	caprine	Nakhon Pathom	B. melitensis
R-14	caprine	Ratchaburi	B. melitensis
R-55	caprine	Ratchaburi	B. melitensis
R-13	caprine	Ratchaburi	B. melitensis
S19	caprine	Nakhon Sawan	B. melitensis
S24	caprine	Nakhon Sawan	B. melitensis
S16	caprine	Nakhon Sawan	B. melitensis
S25	caprine	Nakhon Sawan	B. melitensis
29M	caprine	Saraburi	B. melitensis
298	caprine	Saraburi	B. melitensis
34 S	caprine	Saraburi	B. melitensis
43 S	caprine	Saraburi	B. melitensis
DMST(17)	human	Chanthaburi	B. melitensis
DMST(19)	human	Sa Kaeo	B. melitensis
DMST(20)	human	Phetchaburi	Brucella spp
DMST (1)	human	Chon Buri	B. melitensis
DMST(2)	human	Samut Prakan	B. melitensis
DMST(3)	human	Chaiyaphum	B. melitensis
DMST(4)	human	Chai Nat	B. melitensis
DMST(5)	human	Chai Nat	B. melitensis
DMST(6)	human	Sa Kaeo	B. melitensis
DMST(12)	human	Suphan Buri	B. melitensis
DMST(14)	human	Chanthaburi	B. melitensis
DMST(15)	human	Kanchanaburi	B. melitensis
DMST(16)	human	Kanchanaburi	B. melitensis
DMST(11)	human	Uttaradit	B. melitensis
DMST(13)	human	Uttaradit	B. melitensis
DMST(10)	human	Sa kaeo	B. melitensis
A19 swab	caprine	Nakhon Pathom	B. melitensis
R-48	caprine	Ratchaburi	B. melitensis
P1 swab	caprine	Nakhon Pathom	B. abortus
DMST(7)	human	Chaiyaphum	B. melitensis
DMST (18)	human	Chanthaburi	B. suis
GG102	cattle (Kore.	Gyeonggi, South K	B. abortus
GG103	cattle (Kore.	Kangwon, South	. B. abortus
RR186	cattle	USA	B. abortus
J206	cattle	Brazil	B. abortus
MM159	cattle	England	B. abortus
V214	cattle	Africa	B. abortus
MM155	human	Lyon, France	B. melitensis
MM154	human	Paris, France	B. melitensis
RR179	human	Lebanon	B. melitensis
W173	human	Lebanon	B. melitensis
W178	human	Lebanon	B. melitensis
H233	human	Bosnia	B. melitensis
W169	human	Lebanon	B. melitensis

W178	human	Lebanon	B. melitensis
H233	human	Bosnia	B. melitensis
W169	human	Lebanon	B. melitensis
H234	human	Syria	B. melitensis
V221	human	Irak	B. melitensis
W172	human	Lebanon	B. melitensis
W171	human	Lebanon	B. melitensis
W175	human	Lebanon	B. melitensis
W177	human	Lebanon	B. melitensis
W176	human	Lebanon	B. melitensis
GG105	human	Urlaub, Tyrol, Ger	B. melitensis
MM152	human	Paris, France	B. melitensis
MM153	human	Poitiers, France	B. melitensis
MM156	human	Tarbes, France	B. melitensis
MM158	human	Agen, France	B. melitensis
H232	human	Pakistan	B. melitensis
Yim-M	bovine	Kanchana Buri	B. abortus
Yim-V	bovine	Kanchana Buri	B. abortus
A18 swab	caprine	Nakhon Pathom	B. abortus
B1	bacterial sto.	Bangkok	Brucella spp
B2	bacterial sto.	Bangkok	Brucella spp
B3	bacterial sto.	Bangkok	Brucella spp
B4	bacterial sto.	Bangkok	Brucella spp
R-18	caprine	Ratchaburi	B. abortus
TT76	unknown	Spain	B. melitensis
Kogmilk	bovine	Prachuap Khiri Khan	B. abortus
DMST(9)	human	Chanthaburi	B. abortus
MM137	cattle	Central, Kenya	B. melitensis
MM138	cattle	Central, Kenya	B. melitensis
MM139	cattle	Central, Kenya	B. melitensis
MM141	cattle	Central, Kenya	B. melitensis
MM142	cattle	Central, Kenya	B. melitensis
TT75	(commercial)	Spain	B. melitensis
V215	sheep	South Africa	B. melitensis
TT74	(commercial)	Spain	B. melitensis
TT77	sheep	Spain	B. melitensis
MM126	human	Callao, Peru	B. melitensis
MM127	human	Callao, Peru	B. melitensis
MM128	human	Callao, Peru	B. melitensis
MM129	human	Callao, Peru	B. melitensis
MM131	human	Callao, Peru	B. melitensis
MM132	human	Callao, Peru	B. melitensis
MM133	human	Callao, Peru	B. melitensis
MM134	human	Callao, Peru	B. melitensis
MM135	human	Callao, Peru	B. melitensis
MM136	human	Callao, Peru	B. melitensis
DMST(21)	human	Nakhon Phanom	B. suis
DMST(8)	human	Phetchabun	B. suis
MM151	human	Essonne, France	B. melitensis
RR184	red fox	Austria	B. microti
RR185	red fox	Austria	B. microti
KK122	gray seal	Scotland	B. pinnipedialis
J207	sheep	Brazil	B. ovis
MM148	sheep	Nice, France	B. ovis
MM149	sheep	Rennes, France	B. ovis
LL41	swine	Ribatejo e Oeste, P.	B. suis

Fig 1-Dendogram of clustered MLVA-16 genotypes. The dendogram is constructed from MLVA-16 profiles of 21 Thai Brucella spp isolates from humans, 24 from caprine, 3 from bovine, 4 stock cultures of unknown origin, and more than 56 reference strains. The four columns next to the dendeogram indicated name of strain, host, source of sample and species assignment.

Fig 2-Dendogram of clustered MLVA-16 genotypes to verify Thai Brucella isolates, DMST8, 18, and 21 as B. suis, and DMST20 as B. ovis.
related genetic profile of Thai strains, belong to B. melitensis were included in cluster A. B. melitensis isolated from caprine were clustered together and were in the distinct cluster from human isolates (DMST series). B. melitensis strains from other countries were in cluster B, together with strains of B. abortus, although the clade of B. abortus was separated from B. melitensis. The Thai isolates were distinct from the foreign isolates and located in a distinct A cluster. A number of additional strains of B. melitensis were included in the cluster, while the Thai strains of B. abortus were also included in this cluster C. Other Brucella spp, ie, B. microti, B. pinnipedialis, B. suis, and B. ovis, were included in cluster D.

Multiplex PCR classified DMST 8, 18, and 21 as B. suis, and DMST 20 as prob-
ably B. ovis. In order to confirm this classification, a cluster analysis of MLVA-16 dataset of these isolates was performed in comparison to many strains of B. suis and B. ovis strains from the public database, and the strains that were closely related to our Thai strains were selected and included in the dataset (Fig 2). The Thai B. suis isolates, DMST8, 18 , 21 were clustered in a single clade next to B. suis isolates from swine in other countries. DMST 20 clustered with B. ovis strains isolated from sheep in Brazil and France.

DISCUSSION

Basic microbiological protocol used for primary screening of Brucella isolates is based on bacterial morphology of gram-negative coccobacilli, but for species
identification, multiplex PCR profiles at eight loci are required (Lopez-Goni et al (2008)). However, size of an allele and number of its repeat units are specific to a particular species (Le Fleche et al (2006). For instance, a large database of MLVA profiles for various strains of B. melitensis has allowed more reliable identification of B. melitensis (Al Dahouk et al (2007).

Thai B. melitensis strains (cluster A) were phylogenetically different from those of other countries (cluster B). Among the Thai B. melitensis strains, as expected, those from the same geographic region were located close to one another in the same cluster. Strains derived from caprine were located together and separated from strains derived from humans, suggesting that strains from human and non-human hosts were generically different. There was no instance of zoonotic Brucella transmission from animals to humans. Brucella infections in humans ought to be due to person-to-person transmission.

When B. melitensis DMST 6 and Sar34S strains were subjected to a multilocus sequence typing (MLST) analysis, the strains matched B. melitensis ST8 strain (Chawjiraphan et al, 2016). In MLVA-based analysis, these two strains clustered with B. melitensis, and according to host species and regional source. MLVA correctly assigned both DMST6 and Sar34S to B. melitensis, consistent with MLST strategy, indicating the reliability of this MLVA technique.

Multiplex PCR identified DMST 8, 18, and 21 as B. suis, and DMST 20 as B. ovis, so their MLVA-16 profiles were subjected to a clustering analysis with other B. suis and B. ovis strains available in the MLVA database. MLVA-based cluster analysis correctly placed multiplex PCR-identified B. suis strains among those isolated from swine.

Multiplex PCR identified DMST 20 (from human) as B. ovis and MLVA analysis placed the strain in the cluster containing strains that were often isolated from sheep, and it is therefore possible that the human source acquired the infection from sheep.

Tandem repeat units for each locus from the MLVA-16 panel were used to calculate Simpson's DI of B. melitensis samples only ($n=37$). MLVA-16 profile for the loci of panel 1 had lower DI values than those of panel 2 A or panel 2 B , suggesting the loci of panel 1 are more conserved than those in panel 2. These results supported the selection of loci marker by Le Fleche et al (2006), who informed that markers of panel 1 were minisatellite loci with repeat units length above 9 bp , while markers of panel 2 were microsatellites of highly polymorphic octamers with 2-5 bp repeat unit.

The four stock Brucella strains and R-18 strain isolated from goats in Ratchaburi had multiplex PCR profiles similar to that of B. abortus strain S-19 vaccine strain, MLVA profile of which was clustered among the reference B. abortus strains from foreign countries, different from the C cluster of the Thai strains (data not shown). A possible explanation is that the vaccine strain had reverted to a viable form and was transmitted among other animals.

Yim-M and Yim-V strains isolated from cattle and A-18 swab specimen was from a goat but had multiplex PCR profile of B. abortus, and their MLVA profiles also were closely related. Goat in the same farm might have acquire B. abortus infection either from cow or the environment. Yim-M was isolated from milk and Yim-V from a vaginal swab from the same cow. The other two B. abortus isolates, Kog milk from a cow and human strain DMST 9, were clustered next to one another in the
dendrogram, and both were localized to the correct B. abortus cluster.

In conclusion, this study demonstrates that MLVA-16 strategy was able to classify Brucella isolates at the strain level, and also to cluster the species correctly, except that the Thai isolates of B. abortus and B. melitensis shared the same cluster. Although a limited number of Brucella isolates was included, this study reveals that the Thai Brucella strains are distinct from strains from other continents, and even other Asian countries. Moreover, Brucella strains associated with each host species were phylogenetically distinct. MLVA-16 typing, combined with multiplex PCR, should prove useful in Brucella diagnosis, epidemiology and control.

ACKNOWLEDGEMENTS

This study was supported by a 20122013 Thai Government Research Grant for Mahidol University. The authors thank the Central Laboratory Unit, Faculty of Tropical Medicine, Mahidol University for providing access to research instruments.

Conflict of interests

The authors declare no conflict of interests.

REFERENCES

Al Dahouk S, Fleche PL, Nockler K, et al. Evaluation of Brucella MLVA typing for human brucellosis. J Microbiol Methods 2007; 69: 137-45.
Al Dahouk S, Hofer E, Tomaso H, et al. Intraspecies biodiversity of the genetically homologous species Brucella microti. Appl Environ Microbiol 2012; 78: 1534-43.
Borriello G, Peletto S, Lucibelli MG, Acutis PL, Ercolini D, Galiero G. Link between geographical origin and occurrence of Brucella abortus biovars in cow and water
buffalo herds. Appl Environ Microbiol 2013; 79: 1039-43.
Carmichael L, Kenney R. Canine abortion caused by Brucella canis. J Am Vet Med Assoc 1968; 152: 605-16.
Chawjiraphan W, Sonthayanon P, Chanket P, et al. Multilocus sequence typing of Brucella isolates from Thailand. Southeast Asean J Trop Med Public Health 2016; 47: 1270-87.
Di Giannatale E, De Massis F, Ancora M, Zilli K, Alessiani A. Typing of Brucella field strains isolated from livestock populations in Italy between 2001 and 2006. Vet Ital 2008; 44: 383-8.
Eisenberg T, Hamann H, Kaim U, et al. Isolation of potentially novel Brucella spp from frogs. Appl Environ Microbiol 2012; 78: 3753-5.
Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A, Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol 2007; 57: 2688-93.
Franco MP, Mulder M, Gilman RH, Smits HL, Human brucellosis. Lancet Infect Dis 2007; 7: 775-86.
Garcia-Yoldi D, Le Fleche P, De Miguel MJ, et al. Comparison of multiple-locus variable-number tandem-repeat analysis with other PCR-based methods for typing Brucella suis isolates. J Clin Microbiol 2007; 45: 4070-2.
Garcia-Yoldi D, Marin CM, de Miguel MJ, Munoz PM, Vizmanos JL, Lopez-Goni I, Multiplex PCR assay for the identification and differentiation of all Brucella species and the vaccine strains Brucella abortus S19 and RB51 and Brucella melitensis Rev1. Clin Chem 2006; 52: 779-81.
Her M, Kang S-I, Cho D-H, et al. Application and evaluation of the MLVA typing assay for the Brucella abortus strains isolated in Korea. BMC Microbiol 2009; 9: 230.
Hofer E, Revilla-Fernández S, Al Dahouk S, et al. A potential novel Brucella species
isolated from mandibular lymph nodes of red foxes in Austria. Vet Microbiol 2012; 155: 93-9.
Kattar MM, Jaafar RF, Araj GF, et al. Evaluation of a multilocus variable-number tandemrepeat analysis scheme for typing human Brucella isolates in a region of brucellosis endemicity. J Clin Microbiol 2008; 46: 393540.

Le Fleche P, Jacques I, Grayon M, et al. Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiol 2006; 6: 9.
Lista F, Reubsaet FA, De Santis R, et al. Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS. BMC Microbiol 2011; 11: 267.
López-Goñi I, García-Yoldi D, Marín CM, et al. Evaluation of a multiplex PCR assay (Bruce-ladder) for molecular typing of all Brucella species, including the vaccine strains. J Clin Microbiol 2008; 46: 3484-7.
Maquart M, Le Fleche P, Foster G, et al. MLVA16 typing of 295 marine mammal Brucella isolates from different animal and geographic origins identifies 7 major groups within Brucella ceti and Brucella pinnipedialis. BMC Microbiol 2009; 9: 145.
Marianelli C, Petrucca A, Pasquali P, Ciuchini F, Papadopoulou S, Cipriani P. Use of MLVA-16 typing to trace the source of a laboratory-acquired Brucella infection. J Hosp Infect 2008; 68: 274-6.
Olsen S, Palmer M. Advancement of knowledge of Brucella over the past 50 years. Vet Pathol 2014; 51: 1076-89.

Pappas G, Panagopoulou P, Christou L, Akritidis N. Brucella as a biological weapon. Cell Mol Life Sci 2006; 63: 2229-36.
Schlabritz-Loutsevitch NE, Whatmore AM, Quance CR, et al. A novel Brucella isolate in association with two cases of stillbirth in non-human primates - first report. J Med Primatol 2009; 38: 70-3.
Scholz HC, Hofer E, Vergnaud G, et al. Isolation of Brucella microti from mandibular lymph nodes of red foxes, Vulpes vulpes, in lower Austria. Vector Borne Zoonot Dis 2009; 9: 153-6.
Scholz HC, Nockler K, Gollner C, et al. Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol 2010; 60: 801-8.
Simmons G, Hall W. Epididymitis of rams. Aust Vet J 1953; 29: 33-40.
Stoenner HG, Lackman DB. A new species of Brucella isolated from the desert wood rat, Neotoma lepida Thomas. Am J Vet Res 1957; 18: 947-51.
Tiller R, Gee J, Frace M, et al. Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl Environ Microbiol 2010: 76.
Tiller R, Gee J, Lonsway D, et al. Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52 year-old patient with chronic destructive pneumonia. $B M C$ Microbiol 2010; 10.
Yagupsky P. Detection of Brucellae in blood cultures. J Clin Microbiol 1999; 37: 3437-42.

